Higher-Order Finite Element Electromagnetics Code for HPC Environments

Daniel Garcia-Doñoro⁽²⁾, **Adrian Amor Martin**⁽¹⁾, Luis E. Garcia-Castillo⁽¹⁾

⁽¹⁾Signal Theory and Communications Department University Carlos III of Madrid, Spain [aamor,luise]@tsc.uc3m.es

> ⁽²⁾Xidian University, Xi'an, China. daniel@xidian.edu.cn

12 June 2017

HOFEM for HPC environments

GREMA-UC3M

1/40

Table of contents

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Table of contents

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Antecedents

▶ 20 years of experience on numerical methods for EM.

- Curl-conforming basis functions.
- Non-standard mesh truncation technique (FE-IIEE).
- Adaptivity: *h* and *hp*.
- ▶ Hybridization with MoM, PO/PTD and GTD/UTD.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Antecedents

- 20 years of experience on numerical methods for EM.
 - Curl-conforming basis functions.
 - Non-standard mesh truncation technique (FE-IIEE).
 - Adaptivity: h and hp.
 - Hybridization with MoM, PO/PTD and GTD/UTD.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Motivation

► User-friendly.

► Efficient use of HPC in electromagnetics.

Electromagnetic Features

Antecedents Motivation Outline

Motivation

► User-friendly.

Efficient use of HPC in electromagnetics.

▶ Based on FEM.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Motivation

- ► User-friendly.
- ► Efficient use of HPC in electromagnetics.
- ▶ Based on FEM.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Outline

Electromagnetic modeling features.

Computational features and implementation.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Outline

- Electromagnetic modeling features.
- Computational features and implementation.
- ► Numerical results.

Electromagnetic Features Computational Features Numerical results Conclusions Antecedents Motivation Outline

Outline

- Electromagnetic modeling features.
- Computational features and implementation.
- ► Numerical results.

Formulation Features

Table of contents

Formulation Features

Wave equation

$$\boldsymbol{\nabla} \times \left(\bar{\bar{f}}_r^{-1} \boldsymbol{\nabla} \times \mathbf{V}\right) - k_0^2 \, \bar{\bar{g}}_r \, \mathbf{V} = -jk_0 h_0 \, \mathbf{P} - \boldsymbol{\nabla} \times \left(\bar{\bar{f}}_r^{-1} \mathbf{L}\right) \quad \text{in } \Omega^{\text{FEM}}$$

 $\boldsymbol{\hat{n}} \times \boldsymbol{V} = \boldsymbol{\Psi}_{\mathsf{D}} \quad \text{ over } \boldsymbol{\Gamma}_{\mathsf{D}}$

$$\hat{\mathbf{n}} \times \left(\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V}\right) = \Psi_{\mathsf{N}} \quad \text{over } \Gamma_{\mathsf{N}}$$
$$\hat{\mathbf{n}} \times \left(\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V}\right) + \gamma \, \hat{\mathbf{n}} \times \hat{\mathbf{n}} \times \mathbf{V} = \Psi_{\mathsf{C}} \quad \text{over } \Gamma_{\mathsf{C}}$$

	V	$\overline{\overline{f}}_r$	<i>Ē</i> r	h	Ρ	L	Γ _D	Γ _N
Form. E	Ε	$\bar{\mu_r}$	Ēr	η	J	М	Γ_{PEC}	ГРМС
Form. H	н	ξ _r	$\bar{\mu_r}$	$\frac{1}{\eta}$	М	-J	Γ_{PMC}	

Formulation Features

Variational formulation: Galerkin Method

Find $\mathbf{V} \in \mathbf{H}(\mathsf{curl})$ such that

$$c(\mathbf{F}, \mathbf{V}) = I(\mathbf{F}), \qquad \forall \mathbf{F} \in \mathbf{H}(\mathsf{curl})_{0}$$
$$c(\mathbf{F}, \mathbf{V}) = \int_{\Omega} (\mathbf{\nabla} \times \mathbf{F}) \cdot \left(\bar{f}_{r}^{\pm -1} \mathbf{\nabla} \times \mathbf{V}\right) d\Omega - k_{0}^{2} \int_{\Omega} (\mathbf{F} \cdot \bar{g}_{r}, \mathbf{V}) d\Omega + \gamma \int_{\Gamma_{\mathsf{C}}} (\hat{\mathbf{n}} \times \mathbf{F}) \cdot (\hat{\mathbf{n}} \times \mathbf{V}) d\Gamma_{\mathsf{C}}$$
$$I(\mathbf{F}) = -jk_{0}h_{0} \int_{\Omega} \mathbf{F} \cdot \mathbf{P} d\Omega - \int_{\Gamma_{\mathsf{N}}} \mathbf{F} \cdot \Psi_{\mathsf{N}} d\Gamma_{\mathsf{N}} - \int_{\Gamma_{\mathsf{C}}} \mathbf{F} \cdot \Psi_{\mathsf{C}} d\Gamma_{\mathsf{C}} - \int_{\Omega} \mathbf{F} \cdot \mathbf{\nabla} \times \left(\bar{f}_{r}^{\pm -1}\mathbf{L}\right) d\Omega$$

$$\begin{split} \mathsf{H}(\mathsf{curl})_0 &= \{ \mathsf{W} \in \mathsf{H}(\mathsf{curl}), \, \hat{\mathbf{n}} \times \mathsf{W} = 0 \ \text{ on } \ \mathsf{\Gamma}_\mathsf{D} \} \\ \mathsf{H}(\mathsf{curl}) &= \{ \mathsf{W} \in L^2, \, \boldsymbol{\nabla} \times \mathsf{W} \in L^2 \} \end{split}$$

Formulation Features

EM features

Periodic Boundary Conditions.

Systematic approach for basis functions.

Formulation Features

EM features

- ► Periodic Boundary Conditions.
- ► Systematic approach for basis functions.
- h adaptivity.

Formulation Features

EM features

- Periodic Boundary Conditions.
- ► Systematic approach for basis functions.
- h adaptivity.
- ► FE-IIEE.

Formulation Features

EM features

- ► Periodic Boundary Conditions.
- ► Systematic approach for basis functions.
- h adaptivity.
- ► FE-IIEE.

Formulation Features

Mesh Truncation with FE-IIEE

[width=angle=0] Images/FEMImplemen₁uise4 - eps - converted - to

Features Implementation

Table of contents

Features Implementation

Computational Features

► FORTRAN 2003.

Set of automatic tests.

Features Implementation

Computational Features

► FORTRAN 2003.

Set of automatic tests.

▶ GUI based on GiD.

Features Implementation

Computational Features

- ► FORTRAN 2003.
- Set of automatic tests.
- ► GUI based on GiD.
- MPI and OpenMP directives.

Features Implementation

Computational Features

- ► FORTRAN 2003.
- Set of automatic tests.
- ► GUI based on GiD.
- MPI and OpenMP directives.

Features Implementation

Design by blocks

Features Implementation

Posidonia: In-house HPCaaS Solution (i)

Features Implementation

Posidonia: In-house HPCaaS Solution (ii)

Features:

- Remote job sumission.
- Repository.
- Notifications.
- Profiles

- Design:
 - User friendliness.
 - Efficiency.
 - Generality.
 - Security.
 - Mobility.

A. Amor-Martin, I. Martinez-Fernandez, L. E. Garcia-Castillo. "Posidonia: A Tool for HPC and Remote Scientific Simulations". *IEEE Antennas and Propagation Magazine*, 6:166–177, Dec. 2015.

Features Implementation

GUI

Features Implementation

Flowchart (i)

Features Implementation

Flowchart (ii)

Features Implementation

Flowchart (iii)

Features Implementation

Flowchart (and iv)

Speedup Real problems

Table of contents

Speedup Real problems

Speedup (i)

ICCS

Speedup Real problems

Speedup (ii)

Speedup Real problems

Speedup (and iii)

İCC5

Speedup Real problems

HPC Environment: Cluster of Xidian University (XDHPC)

► 140 compute nodes

- Two twelve-core Intel Xeon 2690 V2 2.2 GHz CPUs
- 64 GB of RAM
- 1.8 TB of hard disk
- ► 56 Gbps InfiniBand network.

Speedup Real problems

Waveguide problem (i)

- Analysis of harmonic low pass filter with higher-order mode suppresion.
- Analysis between 10 and 16 GHz.
- ► Total length: 218 mm.
- Total mesh elements: 324,532 tetrahedra.
- ► Total unknowns: 2,204,894.

 Simulation time: 7.3 min per frequency.

I. Arregui et al, "High-power low-pass harmonic filters with higher-order TE_{n0} and non- TE_{n0} mode suppresion: design method and multipactor characterization". *IEEE Transactions on Microwave Theory and Techniques*, vol. 61, no. 12, pp. 4376-4386, Dec. 2013.

Speedup Real problems

Waveguide problem (ii)

I. Arregui et al, "High-power low-pass harmonic filters with higher-order TE_{n0} and non- TE_{n0} mode suppresion: design method and multipactor characterization". *IEEE Transactions on Microwave Theory and Techniques*, vol. 61, no. 12, pp. 4376-4386, Dec. 2013.

Speedup Real problems

Waveguide problem (and iii)

- 15

I. Arregui et al, "High-power low-pass harmonic filters with higher-order TE_{n0} and non- TE_{n0} mode suppresion: design method and multipactor characterization". *IEEE Transactions on Microwave Theory and Techniques*, vol. 61, no. 12, pp. 4376-4386, Dec. 2013.

Speedup Real problems

Scattering problem: Chevrolet Impala (i)

- ► RCS calculation at 1.5 GHz.
- Tyres modeled as dielectric material ($\varepsilon_r = 40$).
- Several incident planewaves around the car.

Speedup Real problems

Scattering problem: Chevrolet Impala (ii)

- ► Simulation time: 59 min with 46 compute nodes.
- ► Total mesh elements: 2,651,970 tetrahedra.
- ► Total unknowns: 17,277,620.

Speedup Real problems

Scattering problem: Chevrolet Impala (iii)

- ▶ 3D representation of total E-field over the car at 1.5 GHz.
- Incident planewave from the trunk of the car.

Speedup Real problems

Scattering problem: Chevrolet Impala (and iv)

- ▶ 3D representation of RCS in dB at 1.5 GHz.
- Incident planewave in front of the car.

GREMA

Speedup Real problems

Radiation problem: Base Station Antenna (i)

- Analysis between 2 and 3 GHz.
- ► Total length: 1.6 m.
- ► Total mesh elements: 6,861,740 tetrahedra.
- ► Total unknowns: 45,121,862.

Speedup Real problems

Radiation problem: Base Station Antenna (ii)

- ► Simulation time: 5.5 hours per frequency.
- Using 48 compute nodes and 1,152 CPU cores.
- Out-of-core simulation using 1.89 TB RAM.

Speedup Real problems

Radiation problem: Base Station Antenna (iii)

 3D representation of directivity at 2.6 GHz when every element is excited.

Conclusions Future Work

Table of contents

Conclusions Future Work

Conclusions

- ► HPC EM simulator.
- Several tens of millions of unknowns.
- More than one thousand cores used.
- ► 70% scalability.

Conclusions Future Work

Future Work

- ► Work in Progress:
 - Hierarchical basis functions of variable order p.
 - h-adaptivity \Rightarrow support for *hp* meshes.
- Future Work:
 - Conformal and non-conformal DDM.
 - Hybrid (direct + iterative) solver.

Conclusions Future Work

Thank you for your attention!

Higher-Order Finite Element Electromagnetics Code for HPC Environments

Adrián Amor-Martín, aamor@tsc.uc3m.es University Carlos III of Madrid Radiofrequency, Electromagnetics, Microwaves and Antennas Group

