Analysis of Dispersion Error of Higher-Order Curl-Conforming Prismatic Finite Element

Adrián Amor-Martín, Daniel Garcia-Doñoro, Luis Emilio García-Castillo

Universidad Carlos III de Madrid IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics, Modeling and Optimization for RF, Microwave and Terahertz Applications NEMO 2017

18 May 2017

Table of contents

1. Introduction

1.1 Motivation

2. Antecedents

3. Results

- 3.1 MMS
- 3.2 Waveguide

4. Conclusions

Motivation

Table of contents

1. Introduction

1.1 Motivation

2. Antecedents

3. Results

- 3.1 MMS
- 3.2 Waveguide
- 4. Conclusions

Motivation

Motivation

► FEM error investigated through 90's.

▶ Dispersion error.

Motivation

- ► FEM error investigated through 90's.
- Dispersion error.
- Analyzed theoretically with triangles and rectangles.

Motivation

- ► FEM error investigated through 90's.
- Dispersion error.
- Analyzed theoretically with triangles and rectangles.
- Expanded experimentally to tetrahedra and hexahedra.

Motivation

- ► FEM error investigated through 90's.
- Dispersion error.
- Analyzed theoretically with triangles and rectangles.
- Expanded experimentally to tetrahedra and hexahedra.
- What happens to triangular prisms?

Motivation

- ► FEM error investigated through 90's.
- Dispersion error.
- Analyzed theoretically with triangles and rectangles.
- Expanded experimentally to tetrahedra and hexahedra.
- What happens to triangular prisms?

Motivation

Motivation: Why triangular prisms?

Planar structures and waveguides.

- A. Amor Martín, D. García Doñoro, L.E. García Castillo, "Second-order Nédélec Curl- Conforming Prismatic Element for Computational Electromagnetics", IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4384-4395, Oct. 2016.
- D. García Doñoro, S. Ting, A.Amor Martín, L.E. García Castillo, "Analysis of Planar Microwave Devices using Higher Order Curl-Conforming Triangular Prismatic Finite Elements", Microwave and Optical Technology Letters, vol. 58, pp. 1794-1801, Jun. 2016.

Motivation

Motivation: Why triangular prisms?

- Planar structures and waveguides.
- A. Amor Martín, D. García Doñoro, L.E. García Castillo, "Second-order Nédélec Curl- Conforming Prismatic Element for Computational Electromagnetics", IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4384-4395, Oct. 2016.
- D. García Doñoro, S. Ting, A.Amor Martín, L.E. García Castillo, "Analysis of Planar Microwave Devices using Higher Order Curl-Conforming Triangular Prismatic Finite Elements", Microwave and Optical Technology Letters, vol. 58, pp. 1794-1801, Jun. 2016.

Table of contents

1. Introduction 1.1 Motivation

2. Antecedents

- 3. Results 3.1 MMS
- 3.2 Waveguide
- 4. Conclusions

Antecedents (i)

▶ 1992: Lee.

XEM 2017

▶ 1994: Warren, Scott.

Antecedents (and ii)

- ▶ 1997: Wu, Lee.
- ▶ 2000: Ihlenburg, Babuska: $\mathcal{O}(h^{2p})$.
- ▶ 2003: Jin.

In short...

► Unstructured triangles in 2D.

Unstructured tetrahedra in 3D.

- ► Unstructured triangles in 2D.
- Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.

- ► Unstructured triangles in 2D.
- ► Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.
- What happens to prisms?

- ► Unstructured triangles in 2D.
- Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.
- What happens to prisms?
- Tensor product between triangle and segment.

In short...

- ► Unstructured triangles in 2D.
- Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.
- What happens to prisms?
- Tensor product between triangle and segment.

 $\boldsymbol{\mathcal{P}}_{k}^{\text{prism}} = (\mathcal{R}^{k}(\widehat{T}) \otimes \mathcal{P}_{k}(\widehat{I})) \times (\mathcal{P}_{k}(\widehat{T}) \otimes \mathcal{P}_{k-1}(\widehat{I}))$

- ► Unstructured triangles in 2D.
- Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.
- ► What happens to prisms?
- Tensor product between triangle and segment.

$$\boldsymbol{\mathcal{P}}_{\boldsymbol{k}}^{\mathsf{prism}} = (\mathcal{R}^k(\widehat{T}) \otimes \mathcal{P}_k(\widehat{I})) \times (\mathcal{P}_k(\widehat{T}) \otimes \mathcal{P}_{k-1}(\widehat{I}))$$

MMS Waveguide

Table of contents

1. Introduction

1.1 Motivation

2. Antecedents

3. Results

3.1 MMS

3.2 Waveguide

4. Conclusions

MMS Waveguide

Verification: MMS

$$\mathbf{\nabla} \times \frac{1}{\mathbf{f}_{\mathbf{r}}} \mathbf{\nabla} \times \mathbf{u} - k_0^2 \mathbf{g}_{\mathbf{r}} \mathbf{u} = \mathbf{\Psi}.$$

• HOFEM: Monomials $(xyz^2, -xz^2, xyz)$.

MMS Waveguide

Verification: MMS

$$\blacktriangleright \nabla \times \frac{1}{\mathbf{f}_{\mathbf{r}}} \nabla \times \mathbf{u} - k_0^2 \mathbf{g}_{\mathbf{r}} \mathbf{u} = \Psi.$$

- HOFEM: Monomials $(xyz^2, -xz^2, xyz)$.
- ► HOFEM: Planewave.

XXX 2017

MMS Waveguide

Phase error

XEM 2017

 $\varsigma = \frac{\displaystyle \int_{\Omega} \lvert \measuredangle \mathbf{V}_{\mathsf{FEM}}^{\theta} - \measuredangle \mathbf{V}_{\mathsf{MMS}}^{\theta} \rvert \, d\Omega}{\displaystyle \int_{\Omega} \lvert \measuredangle \mathbf{V}_{\mathsf{MMS}}^{\theta} \rvert \, d\Omega}$

Universidad Carlos III de Madrid

MMS Waveguide

Phase error (and ii)

XEM \$2017

$$\varsigma = \frac{\int_{\Omega} \left| \measuredangle \mathbf{V}_{\mathsf{FEM}}^{\theta} - \measuredangle \mathbf{V}_{\mathsf{MMS}}^{\theta} \right| d\Omega}{\int_{\Omega} \left| \measuredangle \mathbf{V}_{\mathsf{MMS}}^{\theta} \right| d\Omega}$$

Universidad Carlos III de Madrid

MMS Waveguide

Long waveguide (i)

• Length: 10λ .

MMS

Waveguide

Long waveguide (and ii)

₩₩₩ 2017

Table of contents

1. Introduction

1.1 Motivation

2. Antecedents

3. Results 3.1 MMS

3.2 Waveguide

4. Conclusions

• First study about dispersion error in prisms.

Anisotropy in the approximation by the prism.

Conclusions

- First study about dispersion error in prisms.
- Anisotropy in the approximation by the prism.
- Not significant dispersion errors.

Conclusions

- First study about dispersion error in prisms.
- Anisotropy in the approximation by the prism.
- ► Not significant dispersion errors.
- ► Hexahedra?

Conclusions

- First study about dispersion error in prisms.
- Anisotropy in the approximation by the prism.
- Not significant dispersion errors.
- ► Hexahedra?

Thank you for your attention!

Analysis of Dispersion Error of Higher-Order Curl-Conforming Prismatic Finite Element

Adrián Amor Martín, aamor@tsc.uc3m.es Universidad Carlos III de Madrid Radiofrequency, Electromagnetics, Microwaves and Antennas Group

