On the Design of Higher-Order Curl-Conforming Finite Elements and its Assembly Features

Adrián Amor-Martín, Daniel Garcia-Doñoro, Luis Emilio García-Castillo

Universidad Carlos III de Madrid IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics, Modeling and Optimization for RF, Microwave and Terahertz Applications NEMO 2017

18 May 2017

Table of contents

1. Introduction

- 1.1 Motivation
- 1.2 Outline

2. Methodology

2.1 Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq

4. Numerical results

5. Conclusions

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

Table of contents

- 1. Introduction
- 1.1 Motivation
- 1.2 Outline
- 2. Methodology
- 2.1 Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq
- 4. Numerical results
- 5. Conclusions

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

Motivation

• FEM: domain, basis functions and DOFs.

- Based on:
 - Cartesian coordinates.
 - Affine coordinates.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

Motivation

- FEM: domain, basis functions and DOFs.
- Based on:
 - Cartesian coordinates.
 - Affine coordinates.

• Computation of the coefficients of the basis functions.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

Motivation

- FEM: domain, basis functions and DOFs.
- Based on:
 - Cartesian coordinates.
 - Affine coordinates.
- Computation of the coefficients of the basis functions.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

Outline

Basis functions obtained with a systematic methodology.

Discretization of degrees of freedom.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

- Basis functions obtained with a systematic methodology.
- Discretization of degrees of freedom.
- Assembly strategies.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

- Basis functions obtained with a systematic methodology.
- Discretization of degrees of freedom.
- Assembly strategies.
- Specific case: triangular prism.

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

- Basis functions obtained with a systematic methodology.
- Discretization of degrees of freedom.
- Assembly strategies.
- Specific case: triangular prism.
- Results

Methodology Assembly strategies Numerical results Conclusions

Motivation Outline

- Basis functions obtained with a systematic methodology.
- Discretization of degrees of freedom.
- Assembly strategies.
- Specific case: triangular prism.
- Results

Methodology

Table of contents

- 1. Introduction
- 1.1 Motivation
- 1.2 Outline

2. Methodology

2.1 Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq
- 4. Numerical results
- 5. Conclusions

Methodology

Systematic approach

► Known space of functions.

• A priori definition of degrees of freedom as functionals.

Methodology

Systematic approach

- ► Known space of functions.
- A priori definition of degrees of freedom as functionals.
- ▶ Basis functions as dual basis with respect to those degrees of freedom.

Methodology

Systematic approach

- Known space of functions.
- A priori definition of degrees of freedom as functionals.
- ▶ Basis functions as dual basis with respect to those degrees of freedom.

Methodology

Definition of the degrees of freedom

Edges.

$$g(\mathbf{u}) = \int_{e} (\mathbf{u} \cdot \hat{\boldsymbol{\tau}}) q \, dl, \forall q \in P_1(e)$$

► Triangular faces.

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} imes \hat{\mathbf{n}}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Methodology

Definition of the degrees of freedom

Edges.

XXX 2017

$$g(\mathbf{u}) = \int_e (\mathbf{u} \cdot \hat{\boldsymbol{\tau}}) q \, dl, \forall q \in P_1(e)$$

► Triangular faces.

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} imes \hat{\mathbf{n}}) \cdot \mathbf{q} \, ds, orall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Quadrilateral faces.

$$g(\mathbf{u}) = \int_{f_q} (\mathbf{\hat{n}} imes \mathbf{u}) \cdot \mathbf{q} \, ds, orall \mathbf{q} = (q_1, q_2); q_1 \in \mathcal{Q}_{0,1}; q_2 \in \mathcal{Q}_{1,0}$$

Methodology

Definition of the degrees of freedom

Edges.

$$g(\mathbf{u}) = \int_e (\mathbf{u} \cdot \hat{\boldsymbol{ au}}) q \, dl, orall q \in P_1(e)$$

► Triangular faces.

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} imes \hat{\mathbf{n}}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Quadrilateral faces.

$$g(\mathbf{u}) = \int_{f_q} (\mathbf{\hat{n}} imes \mathbf{u}) \cdot \mathbf{q} \, ds, orall \mathbf{q} = (q_1, q_2); q_1 \in \mathcal{Q}_{0,1}; q_2 \in \mathcal{Q}_{1,0}$$

► Volume.

XXX 2017

$$g(\mathbf{u}) = \int_{V} \mathbf{u} \cdot \mathbf{q} \, dV, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Methodology

Definition of the degrees of freedom

Edges.

$$g(\mathbf{u}) = \int_e (\mathbf{u} \cdot \hat{\boldsymbol{\tau}}) q \, dl, \forall q \in P_1(e)$$

► Triangular faces.

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} imes \hat{\mathbf{n}}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Quadrilateral faces.

$$g(\mathbf{u}) = \int_{f_q} (\mathbf{\hat{n}} imes \mathbf{u}) \cdot \mathbf{q} \, ds, orall \mathbf{q} = (q_1, q_2); q_1 \in \mathcal{Q}_{0,1}; q_2 \in \mathcal{Q}_{1,0}$$

Volume.

₩₩₩₩€ 2017

$$g(\mathbf{u}) = \int_{V} \mathbf{u} \cdot \mathbf{q} \, dV, \forall \mathbf{q} \in \mathbf{P}_0(f_t)$$

Methodology

Definition of the degrees of freedom

Dual basis	
$m{g}_i(\mathbf{N_j}) = \delta_{ij}$	

Methodology

Use of a master element

- ▶ Discretization: choice of *q*, **q**.
- Local definition of $\hat{\tau}$, $\hat{\mathbf{n}}$, \mathbf{q} .

Methodology

Use of a master element

- ► Discretization: choice of *q*, **q**.
- Local definition of $\hat{\tau}$, $\hat{\mathbf{n}}$, \mathbf{q} .
- ▶ Use of a master element:

 $\mathbf{u} = [J]^{-1}\widehat{\mathbf{u}}$

Methodology

Use of a master element

- ► Discretization: choice of *q*, **q**.
- Local definition of $\hat{\tau}$, $\hat{\mathbf{n}}$, \mathbf{q} .
- ► Use of a master element:

XEM 2017

$$\mathbf{u} = [J]^{-1}\widehat{\mathbf{u}}$$

Methodology

Use of a master element

- ► Discretization: choice of *q*, **q**.
- Local definition of $\hat{\tau}$, $\hat{\mathbf{n}}$, \mathbf{q} .
- ► Use of a master element:

XEM 2017

$$\mathbf{u} = [J]^{-1}\widehat{\mathbf{u}}$$

Degrees of freedom Assembly vc vs vq

Table of contents

- 1. Introduction
- 1.1 Motivation
- 1.2 Outline
- 2. Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq
- 4. Numerical results
- 5. Conclusions

Degrees of freedom Assembly vc vs vq

DOF in faces

- Assembly of edge DOFs.
- Assembly of face DOFs: prism.

Degrees of freedom Assembly vc vs vq

DOF in faces

- Assembly of edge DOFs.
- Assembly of face DOFs: prism.
- ▶ Different cases depending on **q**.

Degrees of freedom Assembly vc vs vq

DOF in faces

- Assembly of edge DOFs.
- Assembly of face DOFs: prism.
- ► Different cases depending on **q**.

Degrees of freedom Assembly vc vs vq

Sharing a triangular face

XEM \$2017

Degrees of freedom Assembly vc vs vq

Sharing a quadrilateral face

Degrees of freedom Assembly vc vs vq

vc vs vq

► *vc* version.

▶ *vq* version.

XEM 2017

Table of contents

- 1. Introduction
- 1.1 Motivation
- 1.2 Outline

2. Methodology

2.1 Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq

4. Numerical results

5. Conclusions

Condition number

Already verified with MMS and real problems.

• Condition number: $\frac{|\lambda_{max}(M)|}{|\lambda_{min}(M)|}$

Condition number

- Already verified with MMS and real problems.
- Condition number: $\frac{|\lambda_{max}(M)|}{|\lambda_{min}(M)|}$
- Compared with formulation from other authors: Graglia and Tobon.
 - Interpolatory.

Condition number

- Already verified with MMS and real problems.
- Condition number: $\frac{|\lambda_{max}(M)|}{|\lambda_{min}(M)|}$
- ► Compared with formulation from other authors: Graglia and Tobon.
 - Interpolatory.

Spectral.

XXX 2017

$$L_{m}L_{l}^{2}\mathbf{W}_{ij}; \ i, j = 1, 2, 3; j > i; m = i, j; l = 4, 5$$

$$L_{i}^{2}L_{l}\nabla L_{l}; \ i = 1, 2, 3; l = 4, 5$$

$$L_{k}L_{l}^{2}\mathbf{W}_{ij}; \ i, j, k = 1, 2, 3; j > i; k \neq i, j; l = 4, 5$$

$$mL_{l}L_{l+1}\mathbf{W}_{ij}; \ i, j = 1, 2, 3; j > i; m = i, j; l = 4$$

$$L_{i}L_{j}L_{l}\nabla L_{l}; \ i, j = 1, 2, 3; j > i; l = 4, 5$$

$$-kL_{l}L_{l+1}\mathbf{W}_{ij}; \ i, j, k = 1, 2, 3; j > i; k \neq i, j; l = 4$$
(1)

Condition number

- Already verified with MMS and real problems.
- Condition number: $\frac{|\lambda_{max}(M)|}{|\lambda_{min}(M)|}$
- ► Compared with formulation from other authors: Graglia and Tobon.
 - Interpolatory.
 - Spectral.

₩₩₩\$ 2017

$$L_{m}L_{i}^{2}\mathbf{W}_{ij}; \ i, j = 1, 2, 3; j > i; m = i, j; l = 4, 5$$

$$L_{i}^{2}L_{l}\nabla L_{l}; \ i = 1, 2, 3; l = 4, 5$$

$$L_{k}L_{l}^{2}\mathbf{W}_{ij}; \ i, j, k = 1, 2, 3; j > i; k \neq i, j; l = 4, 5$$

$$L_{m}L_{l}L_{l+1}\mathbf{W}_{ij}; \ i, j = 1, 2, 3; j > i; m = i, j; l = 4$$

$$L_{i}L_{j}L_{l}\nabla L_{l}; \ i, j = 1, 2, 3; j > i; l = 4, 5$$

$$L_{k}L_{l}L_{l+1}\mathbf{W}_{ij}; \ i, j, k = 1, 2, 3; j > i; k \neq i, j; l = 4$$
(1)

Triangle deformation

$$[M^{p}] = [D]^{-1}[M][D]^{-1}$$
$$[K^{p}] = [D]^{-1}[K][D]^{-1}$$
$$D_{ii} = \sqrt{M_{ii}}$$

		Reference		Triangle deformation						
		prism		$\varepsilon = 4$		$\varepsilon = 8$		$\varepsilon = 16$		
	Version	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	
	vc,(1-2)	81	37	1587	210	18826	791	276385	3096	1
	vc,(2-3)	81	37	217	199	738	733	2827	2856	
	vc,(3-1)	71	38	215	197	737	732	2825	2854	
	vq	72	37	215	197	737	732	2826	2854	ĺ
	Graglia	37	19	174	104	639	394	2498	1551	ĺ
	Tobon	171	20	842	101	3468	398	14046	1588	
								EMA		

Universidad Carlos III de Madrid FEM Design & Assembly

Rectangle deformation

$$[M^{p}] = [D]^{-1}[M][D]^{-1}$$
$$[K^{p}] = [D]^{-1}[K][D]^{-1}$$
$$D_{ii} = \sqrt{M_{ii}}$$

	Refer	rence	Rectangle deformation					
	pris	sm	$\kappa = 2$		$\kappa = 4$		$\kappa = 8$	
Version	$[M^p]$	$[K^p]$	$[M^p]$	$[K^p]$	$[M^p]$	[<i>K</i> ^{<i>p</i>}]	$[M^p]$	[<i>K</i> ^{<i>p</i>}]
VC	72	37	3107	2566	12270	10205	48926	40765
vq	72	37	2187	2066	8435	8171	33432	32599
Graglia	37	19	1484	1067	5889	4279	23509	17131
Tobon	171	20	5967	1209	23559	4226	93928	16923

Tetrahedra

₩₩₩\$ 2017

	Parent El.	Example el.2	El. Cube $1 \times 2 \times 4$
vq	128	174	175
VC	138	189	1214

Table of contents

- 1. Introduction
- 1.1 Motivation
- 1.2 Outline

2. Methodology

2.1 Methodology

3. Assembly strategies

- 3.1 Degrees of freedom
- 3.2 Assembly
- 3.3 vc vs vq
- 4. Numerical results

5. Conclusions 2017

Tetrahedra

► Systematic approach with affine coordinates.

Precomputation of coefficients of basis functions.

Tetrahedra

- ► Systematic approach with affine coordinates.
- Precomputation of coefficients of basis functions.
- ▶ In triangular faces precomputation is not worth it.

Tetrahedra

- ► Systematic approach with affine coordinates.
- Precomputation of coefficients of basis functions.
- ▶ In triangular faces precomputation is not worth it.
- ▶ In quadrilateral faces precomputation can be worth it.

Tetrahedra

- ► Systematic approach with affine coordinates.
- Precomputation of coefficients of basis functions.
- ▶ In triangular faces precomputation is not worth it.
- ▶ In quadrilateral faces precomputation can be worth it.

Thank you for your attention!

₩₩₩₩€ 2017

On the Design of Higher-Order Curl-Conforming Finite Elements and its Assembly Features

Adrián Amor Martín, aamor@tsc.uc3m.es Universidad Carlos III de Madrid Radiofrequency, Electromagnetics, Microwaves and Antennas Group

