Three-level parallelization for Finite Element Code with Hybrid Meshes

Adrian Amor-Martin⁽¹⁾ Daniel Garcia-Donoro⁽²⁾,

Luis E. Garcia-Castillo⁽¹⁾

September 5, 2018 URSI 2018, Granada

⁽¹⁾Radiofrequency, Microwaves, Electromagnetics and Antennas Group.

University Carlos III of Madrid.

[aamor,luise]@tsc.uc3m.es

⁽²⁾Xidian University, Xi'an, China. daniel@xidian.edu.cn Introduction

- User-friendly.
- Based on GiD.

• Efficient use of HPC in electromagnetics.

- Memory limits (use of MUMPS).
- Domain Decomposition Method.
 - Memory.
 - Flexibility.

Intro: DDM

- Nonoverlapping, nonconformal and nonmatching.
- Hybrid meshes.
- Geometry aware optimization.
- *hp* adaptivity in 3D.

Formulation

$$\nabla \times \frac{1}{\mu_r} (\nabla \times \mathbf{E}) - k_0^2 \varepsilon_r \mathbf{E} = \mathbf{O}$$
$$\widehat{\mathbf{n}} \times \mathbf{E} = 0, \text{ on } \Gamma_{\mathrm{D}}$$
$$\widehat{\mathbf{n}} \times \frac{1}{\mu_{ri}} (\nabla \times \mathbf{E}) = 0, \text{ on } \Gamma_{\mathrm{N}}$$
$$\widehat{\mathbf{n}} \times \frac{1}{\mu_{ri}} (\nabla \times \mathbf{E}) + jk_0 \widehat{\mathbf{n}} \times \widehat{\mathbf{n}} \times \mathbf{E} = \Psi, \text{ on } \Gamma_{\mathrm{C}}$$

Find $\mathbf{E} \in \mathbf{W}$ such that

$$c_{1}(\mathbf{F}, \mathbf{E}) - k_{0}^{2} c_{2}(\mathbf{F}, \mathbf{E}) + \gamma c_{3}(\mathbf{F}, \mathbf{E}) = l(\mathbf{F}), \quad \forall \mathbf{F} \in \mathbf{W}$$

$$c_{1}(\mathbf{F}, \mathbf{E}) = \int_{\Omega} (\mathbf{\nabla} \times \mathbf{F}) \cdot (\frac{1}{\mu_{r}} \mathbf{\nabla} \times \mathbf{E}) d\Omega$$

$$c_{2}(\mathbf{F}, \mathbf{E}) = \int_{\Omega} \mathbf{F} \cdot \varepsilon_{r} \mathbf{E} d\Omega$$

$$c_{3}(\mathbf{F}, \mathbf{E}) = \int_{\Gamma_{c}} (\mathbf{\widehat{n}} \times \mathbf{F}) \cdot (\mathbf{\widehat{n}} \times \mathbf{E}) d\Gamma_{c}$$

$$l(\mathbf{F}) = \int_{\Omega} (\mathbf{F} \cdot \mathbf{O}) d\Omega - \int_{\Gamma_{c}} (\mathbf{F} \cdot \mathbf{\Psi}) \Gamma_{c}$$

$$\mathbf{W} := \{\mathbf{A} \in \mathbf{H}(\text{curl}, \Omega), \ \mathbf{\widehat{n}} \times \mathbf{A} = 0 \text{ on } \Gamma_{D}\}$$

$$\mathbf{\nabla} imes rac{1}{\mu_{ri}} (\mathbf{\nabla} imes \mathbf{E}_i) - k_0^2 \varepsilon_{ri} \mathbf{E}_i = \mathbf{O}_i$$

 $\begin{aligned} \widehat{\mathbf{n}}_i \times \mathbf{E}_i &= 0, \text{ on } \Gamma_{i,\text{D}} \\ \widehat{\mathbf{n}}_i \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_i) &= 0, \text{ on } \Gamma_{i,\text{N}} \\ \widehat{\mathbf{n}}_i \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_i) + jk_0 \widehat{\mathbf{n}}_i \times \widehat{\mathbf{n}}_i \times \mathbf{E}_i &= \Psi_i, \text{ on } \Gamma_{i,\text{C}} \\ \widehat{\mathbf{n}}_i \times \mathbf{E}_i \times \widehat{\mathbf{n}}_i &= \widehat{\mathbf{n}}_j \times \mathbf{E}_j \times \widehat{\mathbf{n}}_j, \text{ on } \Gamma_{ij} \\ \widehat{\mathbf{n}}_i \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_i) &= -\widehat{\mathbf{n}}_j \times \frac{1}{\mu_{rj}} (\mathbf{\nabla} \times \mathbf{E}_j), \text{ on } \Gamma_{ij} \end{aligned}$

Formulation: cement variables and TC

$$\begin{split} \mathbf{e}_{i} &= \widehat{\mathbf{n}}_{i} \times \mathbf{E}_{i} \times \widehat{\mathbf{n}}_{i} \\ \mathbf{j}_{i} &= \frac{1}{k_{0}} \widehat{\mathbf{n}}_{i} \times \frac{1}{\mu_{\tau i}} (\mathbf{\nabla} \times \mathbf{E}_{i}) \\ \rho_{i} &= \frac{1}{k_{0}} \nabla_{\tau} \cdot \mathbf{j}_{i} \end{split}$$

$$\begin{aligned} (\alpha \mathcal{I} + \beta_i \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_i) + (\mathcal{I} + \gamma_i \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_i) &= \\ (\alpha \mathcal{I} + \beta_j \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_j) - (\mathcal{I} + \gamma_j \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_j) \\ \mathcal{S}_{\mathsf{TE}} &= \boldsymbol{\nabla}_{\tau} \times \boldsymbol{\nabla}_{\tau} \times \\ \mathcal{S}_{\mathsf{TM}} &= \nabla_{\tau} \nabla_{\tau} \cdot \end{aligned}$$

Find
$$\mathbf{E}_i \in \mathbf{W}_i, \mathbf{j}_i \in \mathbf{X}_i, \rho_i \in Y_i$$
 such that
 $c_1(\mathbf{F}_i, \mathbf{E}_i) - k_0^2 c_2(\mathbf{F}_i, \mathbf{E}_i) +$
 $jk_0 c_{\tau,1}(\widehat{\mathbf{n}}_i \times \mathbf{F}_i, \widehat{\mathbf{n}}_i \times \mathbf{E}_i) = l(\mathbf{F}_i), \forall \mathbf{F}_i \in \mathbf{W}_i$
 $\alpha c_{\tau,1}(\mathbf{l}_i, \mathbf{e}_i) + k_0 c_{\tau,1}(\mathbf{l}_i, \mathbf{j}_i) + k_0^2 \gamma_i c_{\tau,1}(\mathbf{l}_i, \nabla_{\tau} \rho_i) +$
 $\beta_i k_0 c_{\tau,1}(\nabla_{\tau} \times \mathbf{l}_i, \nabla_{\tau} \times \mathbf{e}_i) = \alpha c_{\tau,1}(\mathbf{l}_i, \mathbf{e}_j) -$
 $k_0 c_{\tau,1}(\mathbf{l}_i, \mathbf{j}_j) - k_0^2 \gamma_j c_{\tau,1}(\mathbf{l}_i, \nabla_{\tau} \rho_j) +$
 $\beta_j k_0 c_{\tau,1}(\nabla_{\tau} \times \mathbf{l}_i, \nabla_{\tau} \times \mathbf{e}_j), \forall \mathbf{l}_i \in \mathbf{X}_i$
 $c_{\tau,1}(\nabla_{\tau} \phi_i, \mathbf{j}_i) + k_0 c_{\tau,2}(\phi_i, \rho_i) = 0, \forall \phi_i \in Y_i$
 $\mathbf{F}_i \in \mathbf{W}_i := \mathbf{H}_0(\text{curl}; \Omega_i), \mathbf{l}_i \in \mathbf{X}_i := \mathbf{H}_0(\text{curl}_{\tau}; \Gamma_{ij}),$
 $\phi_i \in Y_i := H_0^{-1/2}(\Gamma_{ij})$

Formulation: variational formulation with DDM (& ii) \mathbb{GREMA}

$$c_{1}(\mathbf{F}_{i}, \mathbf{E}_{i}) = \int_{\Omega_{i}} (\mathbf{\nabla} \times \mathbf{F}_{i}) \cdot \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_{i}) d\Omega_{i}$$

$$c_{2}(\mathbf{F}_{i}, \mathbf{E}_{i}) = \int_{\Omega_{i}} \mathbf{F}_{i} \cdot \varepsilon_{ri} \mathbf{E}_{i} d\Omega_{i}$$

$$c_{\tau,1}(\mathbf{l}_{i}, \mathbf{e}_{j}) = \int_{\Gamma_{ij}} (\mathbf{l}_{i} \cdot \mathbf{e}_{j}) d\Gamma_{ij}$$

$$c_{\tau,2}(\phi_{i}, \rho_{j}) = \int_{\Gamma_{ij}} (\phi_{i}\rho_{j}) d\Gamma_{ij}$$

$$l(\mathbf{F}_i) = \int_{\Omega_i} (\mathbf{F}_i \cdot \mathbf{O}_i) \, d\Omega_i - \int_{\Gamma_{i,\mathsf{C}}} (\mathbf{F}_i \cdot \mathbf{\Psi}_i) \, \Gamma_{i,\mathsf{C}}$$

10/28

Implementation

- Algorithm: DDM.
- Process: MPI.
- Thread: OpenMP.

Implementation: workflow (ii)

Implementation: workflow (iii)

Implementation: workflow (iv)

Implementation: workflow (& v)

Numerical results

- Pre and postprocessing: GiD.
- Direct solver: MUMPS.
- Iterative solver: GCR through PETSC.
 - Residual: 10^{-6} .
- SOTC-TE.

- WR-90 empty waveguide.
- Working frequency $f = 10 \, \text{GHz}$.
- Length of $10\lambda_g$.
- 3 simulations:
 - Without DDM: 750688 unknowns.
 - With nonconformal DDM: tetrahedra, prisms and hexahedra: 512622 unknowns, 10 dom.

Results: long waveguide

Results: long waveguide

Case of study	Time (s)	Peak memory (Mb)
No DDM (MPI 1, OpenMP 8)	397.49	6867
No DDM (MPI 10, OpenMP 4)	58.475	2187
DDM (MPI 10, OpenMP 1)	228.48	1550
DDM (MPI 10, OpenMP 2)	184.02	1550
DDM (MPI 10, OpenMP 4)	163.18	1550

- WR-90 empty waveguide.
- Working frequency $f = 10 \, \text{GHz}$.
- Length of $100\lambda_g$.
- 2 simulations:
 - Without DDM: 5042688 unknowns.
 - With *conformal* DDM, METIS: 26500 unknowns per dom., 200 dom.

Case of study	Time (s)	Peak memory (Mb)
No DDM (MPI 12, OpenMP 4)	416.561	23060
DDM, 30 dom. (MPI 12, OpenMP 4)	1457.60	13467
DDM, 40 dom. (MPI 12, OpenMP 4)	1311.66	13244
DDM, 40 dom, direct (MPI 12, OpenMP 4)	1454.78	13399
DDM, 50 dom. (MPI 12, OpenMP 4)	1108.97	13329
DDM, 100 dom. (MPI 12, OpenMP 4)	1259.97	14217
DDM, 200 dom. (MPI 12, OpenMP 4)	2341.79	16076

- WR-75 waveguide.
- X-band.
- 4 rectangular cavities:
 - Embedded resonator of $\varepsilon_r = 30$.
 - Support of $\varepsilon_r = 9$.
- 236690 unknowns for DDM, 412428 without DDM.

Alessandri, Ferdinando, et al. "The electric-field integral-equation method for the analysis and design of a class of rectangular cavity filters loaded by dielectric and metallic cylindrical pucks." *IEEE transactions on microwave theory and techniques*, 52.8 (2004): 1790-1797.

GiD

21/28

- Resonant SWA with length $4.5\lambda_g$.
- 7 elliptical slots.
- 9 subdomains.
- Working frequency: $f = 3.4045 \,\mathrm{GHz}$.
- 611440 unknowns without DDM, 657256 with DDM.
- Systematic family of basis functions.
- Surface problem:
 - 141 iterations.
 - 61088 unknowns.

El Misilmani, Hilal M., Mohammed Al-Husseini, and Karim Y. Kabalan. "Design of slotted waveguide antennas with low sidelobes for high power microwave applications." *Progress In Electromagnetics Research* 56 (2015): 15-28.

Results: SWA

- 4x4 circular horns.
- Working frequency $f = 10 \, \text{GHz}$
- Uniform excitation through WR-90 waveguides.
- 2261472 unknowns without DDM, 2368032 unknowns with DDM.
- Unstructured tetrahedra.
- Surface problem:
 - 73 iterations.
 - 185856 unknowns.

GREM

- Stealth design.
- Unstructured tetrahedra mesh.
- RCS for f = 50 MHz.
- Domains obtained through ParMETIS.
- Without DDM, 1011464 unknowns; with DDM, 1063208 unknowns.
- Surface problem (5 domains):
 - 360 iterations.
 - 68790 unknowns.

Results: RCS for F117

Results: RCS for F117

ŕ.

ph.

24/28

Results: RCS for F117

• Singularity through l-shape domain

Bonus track: h adaptivity

Bonus track: h adaptivity

Bonus track: h adaptivity

Bonus track: h adaptivity for SWA

Hidden gem: hp adaptivity

- 134578 unknowns for h adaptivity.
- 67512 unknowns for hp adaptivity.

Hidden gem: hp adaptivity

Hidden gem: hp adaptivity

Conclusions

- Introduction of DDM as third level.
- Geometry aware optimization with hybrid meshes.
- Best use of memory for large scale problems.
- Controlled loss of accuracy.
- Flexibility.

Thanks for your attention! Adrian Amor-Martin aamor@ing.uc3m.es