H(curl)-Conforming Hierarchical Basis Functions on Prisms and Hexahedra

Adrián Amor-Martín, László Levente Tóth, Romanus Dyczij-Edlinger

Kleinheubacher Tagung, Miltenberg, September 24, 2019

Lehrstuhl für Theoretische Elektrotechnik Universität des Saarlandes Introduction

$$H(\operatorname{curl}, \Omega) := \left\{ w \in [L_2(\Omega)]^3 \middle| \boldsymbol{\nabla} \times w \in [L_2(\Omega)]^3 \right\}$$

$$H^{1}(\Omega) := \left\{ v \in [L_{2}(\Omega)]^{3} \middle| \nabla v \in [L_{2}(\Omega)]^{3} \right\}$$
$$\forall v_{p} \in H^{1}(\Omega), \nabla v_{p+1} \notin \mathbf{w}_{p}$$

Nédélec, Jean-Claude

Mixed finite elements in R3

Numerische Mathematik, 35(3): 315-341, 1980.

 $\mathcal{W}_p = \operatorname{span}(w_p)$

 $W_{p-1} \subset W_p$

Webb, Jon P.

Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements

IEEE Transactions on Antennas and Propagation, 47(8): 1244-1253, 1999.

Graglia, Roberto D. and Peterson, Andrew F.

Hierarchical curl-conforming Nédélec elements for quadrilateral and brick cells IEEE Transactions on Antennas and Propagation, 59(8): 2766-2773, 2011.

Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Nagaraj, Sriram Orientation embedded high order shape functions for the exact sequence elements of all shapes

Computers & Mathematics with applications, 70(4): 353-458, 2015.

•
$$\boldsymbol{\pi}_{\boldsymbol{\rho}} \boldsymbol{w}_{\boldsymbol{q}} = 0$$
 $\forall \boldsymbol{w}_{\boldsymbol{q}} \in \tilde{\mathcal{W}}_{\boldsymbol{q}}, \, \boldsymbol{q} > \boldsymbol{p}$

• Division into gradient and rotational spaces

Ingelström, Pär

A new set of H (curl)-conforming hierarchical basis functions for tetrahedral meshes

IEEE Transactions on Microwave Theory and Techniques, 54(1): 106-114, 2006.

Intro: Structured meshes

• Planar structures

Intro: Structured meshes

- Planar structures
- Waveguide sections

- Planar structures
- Waveguide sections
- Hybrid meshes

1. Introduction

- 2. Construction of basis functions
 - Definition of finite element
 - Procedure
- 3. Numerical results
 - Single element
 - Convergence
- 4. Conclusions

Construction of basis functions

Construction of basis functions

Definition of finite element

- Domain
- $\cdot\,$ Space of functions
- \cdot Degrees of freedom

Construction: domain

Affine coordinates

$$\phi_i \in [0,1], \ i=1,\ldots,6$$

$$\phi_4 = 1 - \phi_1$$

$$\phi_5 = 1 - \phi_2$$

$$\phi_6 = 1 - \phi_3$$

Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Nagaraj, Sriram Orientation embedded high order shape functions for the exact sequence elements of all shapes Computers & Mathematics with applications, 70(4): 353-458, 2015.

Construction: domain

 \cdot Affine coordinates

$$\phi_i \in [0, 1], \ i = 1, \dots, 5$$

 $\phi_1 = 1 - \phi_2 - \phi_3$
 $\phi_5 = 1 - \phi_6$

Fuentes, Federico; Keith, Brendan; Demkowicz, Leszek; Nagaraj, Sriram Orientation embedded high order shape functions for the exact sequence elements of all shapes *Computers & Mathematics with applications, 70(4): 353-458, 2015.*

• Hexahedron

$$\mathcal{W}_{p} = \{ \mathbb{P}_{p-1}(l_{x}) \otimes \mathbb{P}_{p}(l_{y}) \otimes \mathbb{P}_{p}(l_{z}) \} \times \\ \{ \mathbb{P}_{p}(l_{x}) \otimes \mathbb{P}_{p-1}(l_{y}) \otimes \mathbb{P}_{p}(l_{z}) \} \times \\ \{ \mathbb{P}_{p}(l_{x}) \otimes \mathbb{P}_{p}(l_{y}) \otimes \mathbb{P}_{p-1}(l_{z}) \}$$

• Triangular prism

$$\mathcal{W}_{p} = \{\mathcal{R}_{p}(T_{x,y}) \otimes \mathbb{P}_{p}(I_{z})\} \times \{\mathbb{P}_{p}(T_{x,y}) \otimes \mathbb{P}_{p-1}(I_{z})\}$$
$$\mathcal{R}_{p}(T_{x,y}) = (\mathbb{P}_{p-1})^{2} \oplus \mathcal{S}_{p}$$
$$\mathcal{S}_{p} = \{\mathbf{w} \in (\tilde{\mathbb{P}}_{p})^{2} \mid \mathbf{w} \cdot \mathbf{r} = 0\}$$

• Edges

$$\alpha_p^e(\mathbf{w}) = (\mathbf{q}^e, \mathbf{w})_e = \int_e \mathbf{q}^e \cdot \mathbf{w} \, de \qquad \forall \, \mathbf{q}^e \in \mathbb{P}_{p-1}$$

- Edges
- Triangular faces $\alpha_p^{\Delta}(\mathbf{w}) = (\mathbf{q}^{\Delta}, \mathbf{w})_f = \int_f \mathbf{q}^{\Delta} \cdot \mathbf{w} \, df \qquad \forall \, \mathbf{q}^{\Delta} \in (\mathbb{P}_{p-2})^2$

- Edges
- Triangular faces
- Rectangular faces

$$\alpha_p^{\Box}(\boldsymbol{w}) = (\boldsymbol{q}^{\Box}, \boldsymbol{w})_f = \int_f \boldsymbol{q}^{\Box} \cdot \boldsymbol{w} \, df \quad \forall \, \boldsymbol{q}^{\Box} \in (\{\mathbb{P}_{p-1,p-2}\} \times \{\mathbb{P}_{p-2,p-1}\})$$

- Edges
- Triangular faces
- Rectangular faces
- Volume
 - Hexahedron

$$\alpha_p^{\mathsf{v}}(\mathbf{w}) = (\mathbf{q}^{\mathsf{v}}, \mathbf{w})_{\mathsf{v}} = \int_{H} \mathbf{q}^{\mathsf{v}} \cdot \mathbf{w} \, dH$$
$$\forall \, \mathbf{q}^{\mathsf{v}} \in (\{\mathbb{P}_{p-1, p-2, p-2}\} \times \{\mathbb{P}_{p-2, p-1, p-2}\} \times \{\mathbb{P}_{p-2, p-2, p-1}\})$$

- Edges
- Triangular faces
- Rectangular faces
- Volume
 - Hexahedron
 - Triangular prism

$$\alpha_{p}^{\{v_{1},v_{2}\}}(\mathbf{w}) = \int_{p} \mathbf{q}^{\{v_{1},v_{2}\}} \cdot \mathbf{w} \, dP$$
$$\forall \, \mathbf{q}^{v_{1}} \in (\mathbb{P}_{p-2,p-2,0} \times \mathbb{P}_{p-2,p-2,0} \times \{0\})$$
$$\forall \, \mathbf{q}^{v_{2}} \in (\{0\} \times \{0\} \times \{\mathbb{P}_{p_{1},p_{2},p-1}\}), \, p_{1} + p_{2} = p - 3$$

Construction of basis functions

Procedure

Construction: procedure

1.
$$\mathcal{V}_{p} = \tilde{\mathcal{V}}_{1} \oplus \cdots \oplus \tilde{\mathcal{V}}_{p}$$

2. $\mathcal{W}_{p} = \tilde{\mathcal{W}}_{1} \oplus \cdots \oplus \tilde{\mathcal{W}}_{p}$
3. $\tilde{\mathcal{W}}_{1} = \tilde{\mathcal{A}}_{1}$
4. $\tilde{\mathcal{W}}_{p} = \tilde{\mathcal{A}}_{p} \oplus \nabla \tilde{\mathcal{V}}_{p}$
5. Apply $\pi_{p} w_{q} = 0$
 $\cdot \alpha_{p}(w - \pi_{p}w) = 0$
 $\cdot \alpha_{p-1}^{e}(\tilde{w}_{p}) = 0$
 $\cdot \alpha_{p-1}^{f}(\tilde{w}_{p}) = 0$

 $\mathcal{V}_p \in H^1(\Omega)$ $\mathcal{W}_p \in H(\operatorname{curl}, \Omega)$

$$p > 1$$

$$\forall \mathbf{w}_q \in \tilde{\mathcal{W}}_q, \, q > p$$

$$\alpha_p = \alpha_p^e, \, \alpha_p^f, \, \alpha_p^v$$

Construction: polynomials (i)

 \cdot Whitney functions

$$\boldsymbol{arpi}(\phi_i,\phi_j)=\boldsymbol{arpi}_{ij}=\phi_j \boldsymbol{\nabla} \phi_i - \phi_i \boldsymbol{\nabla} \phi_j$$

• Legendre-based polynomials

$$\rho_{1}(\phi_{i},\phi_{j}) = \rho_{1,ij} = \phi_{i} - \phi_{j}$$

$$\rho_{2}(\phi_{i},\phi_{j}) = \rho_{2,ij} = \phi_{i}^{2} - 3\phi_{i}\phi_{j} + \phi_{j}^{2}$$

$$\kappa_{2}(\phi_{i},\phi_{j}) = \kappa_{2,ij} = \phi_{i}^{2} - 4\phi_{i}\phi_{j} + \phi_{j}^{2}$$

$$\rho_{3}(\phi_{i},\phi_{j}) = \rho_{3,ij} = \phi_{i}^{3} - 6\phi_{i}^{2}\phi_{j} + 6\phi_{i}\phi_{j}^{2} - \phi_{j}^{3}$$

$$\kappa_{3}(\phi_{i},\phi_{j}) = \kappa_{3,ij} = \phi_{i}^{3} - 9\phi_{i}^{2}\phi_{j} + 9\phi_{i}\phi_{j}^{2} - \phi_{j}^{3}$$

• Useful relations when $\phi_j = 1 - \phi_i$

$$\begin{aligned} \rho_{1,ij} \nabla \phi_i &= \nabla(\phi_i \phi_j) \\ \kappa_{2,ij} \nabla \phi_i &= \nabla(\phi_i \phi_j \rho_{1,ij}) = \tilde{P}_2(\phi_i) \nabla \phi_i \\ \kappa_{3,ij} \nabla \phi_i &= \nabla(\phi_i \phi_j \rho_{2,ij}) = \tilde{P}_3(\phi_i) \nabla \phi_i \end{aligned}$$

 \cdot Scalar expansion factors for \mathcal{V}_p

$$\begin{split} \Upsilon_2(\phi_i,\phi_j) &= \{\phi_i\phi_j\}\\ \Upsilon_3(\phi_i,\phi_j) &= \{\Upsilon_2(\phi_i,\phi_j),\phi_i\phi_j\rho_{1,i,j}\}\\ \Upsilon_4(\phi_i,\phi_j) &= \{\Upsilon_3(\phi_i,\phi_j),\phi_i\phi_j\rho_{2,i,j}\} \end{split}$$

+ Vector expansion factors for \mathcal{A}_{ρ}

$$\begin{split} \Xi_2'(\phi_i,\phi_j) &= \Xi_2(\phi_i,\phi_j) \\ \Xi_3'(\phi_i,\phi_j) &= \{\Xi_2'(\phi_i,\phi_j),\kappa_{2,ij}\varpi_{ij}\} \\ \Xi_4'(\phi_i,\phi_j) &= \{\Xi_3'(\phi_i,\phi_j),\kappa_{3,ij}\varpi_{ij}\} \end{split}$$

	Space	Basis functions
$\mathbf{w}_1 = \phi_k \phi_l \boldsymbol{\varpi}_{ii}, \mathbf{w}_1 \in \mathcal{A}_1$	$ ilde{\mathcal{V}}_2$	$\phi_k \phi_l \phi_i \phi_j$
$\mathbf{w}_p = \mathbf{\nabla} v_p, \forall p > 1$	$ ilde{\mathcal{V}}_3$	$\phi_k \phi_l \phi_i \phi_j ho_{1,ij}$
	$ ilde{\mathcal{V}}_4$	$\phi_k \phi_l \phi_i \phi_j \rho_{2,ij}$

Construction: edge functions

Construction: edge functions

Construction: edge functions

Construction: face and interior functions (i)

• Procedure

- 1. Build $\nabla \mathcal{V}_p$ enforcing $\pi_p \nabla v_q = 0$, q > p
- 2. Build \mathcal{W}_p with tensor-products, $\boldsymbol{\pi}_p \boldsymbol{w}_q = 0, \qquad q > p$
- 3. Move dim $(\boldsymbol{\nabla}\mathcal{V}_p)$ functions from \mathcal{W}_p to separate spaces
- Example (i): face functions

$$v_p^f = \phi_m\{\Upsilon_p(\phi_i, \phi_j)\} \times \{\Upsilon_p(\phi_k, \phi_l)\}$$

$$\begin{split} \mathbf{w}_{p}^{f} &= \phi_{m} \left(\left\{ \Upsilon_{p}(\phi_{i},\phi_{j}) \right\} \times \left\{ \Xi_{p}(\phi_{k},\phi_{l}) \right\} \oplus \\ &\left\{ \Upsilon_{p}(\phi_{k},\phi_{l}) \right\} \times \left\{ \Xi_{p}(\phi_{i},\phi_{j}) \right\} \right) \end{split}$$

Construction: face and interior functions (& ii)

• Example (ii): second-order face functions

$$\tilde{v}_2^f = \phi_m \phi_i \phi_j \phi_k \phi_l$$

$$\begin{split} \tilde{W}_{2}^{f,(1)} &= \phi_{m}\phi_{i}\phi_{j}\varpi_{kl} \\ \tilde{W}_{2}^{f,(2)} &= \phi_{m}\phi_{k}\phi_{l}\varpi_{ij} \\ \tilde{W}_{2}^{f,(3)} &= \phi_{m}\phi_{i}\phi_{j}\rho_{1,kl}\varpi_{kl} \\ \tilde{W}_{2}^{f,(4)} &= \phi_{m}\phi_{k}\phi_{l}\rho_{1,ij}\varpi_{ij} \end{split}$$

$$\boldsymbol{\nabla} \tilde{v}_2^f = \tilde{\boldsymbol{w}}_2^{f,(3)} + \tilde{\boldsymbol{w}}_2^{f,(4)}$$

Numerical results

Numerical results

Single element

Results: condition number

$$M_{ij} = (\boldsymbol{w}_i, \boldsymbol{w}_j)_{v}$$
$$\boldsymbol{M}_{p} = \boldsymbol{D}_{M}^{-1} \boldsymbol{M} \boldsymbol{D}_{M}^{-1}, \ \boldsymbol{D}_{M,ii} = \sqrt{M_{ii}}$$
$$\boldsymbol{K}_{ij} = (\boldsymbol{\nabla} \times \boldsymbol{w}_i, \boldsymbol{\nabla} \times \boldsymbol{w}_j)_{v}$$
$$\boldsymbol{K}_{p} = \boldsymbol{D}_{K}^{-1} \boldsymbol{M} \boldsymbol{D}_{K}^{-1}, \ \boldsymbol{D}_{K,ii} = \sqrt{K_{ii}}$$

Prism	Mp	1	Kp	
	Fuentes, [1]	Proposed	Fuentes, [1]	Proposed
Order 2	730	1081	34	74
Order 3	3193	2095	71	91
Order 4	40780	11380	198	182

Results: condition number

$$M_{ij} = (\boldsymbol{w}_i, \boldsymbol{w}_j)_{v}$$
$$\boldsymbol{M}_{p} = \boldsymbol{D}_{M}^{-1} \boldsymbol{M} \boldsymbol{D}_{M}^{-1}, \ \boldsymbol{D}_{M,ii} = \sqrt{M_{ii}}$$
$$\boldsymbol{K}_{ij} = (\boldsymbol{\nabla} \times \boldsymbol{w}_i, \boldsymbol{\nabla} \times \boldsymbol{w}_j)_{v}$$
$$\boldsymbol{K}_{p} = \boldsymbol{D}_{K}^{-1} \boldsymbol{M} \boldsymbol{D}_{K}^{-1}, \ \boldsymbol{D}_{K,ii} = \sqrt{K_{ii}}$$

Hexahedra	$M_{ ho}$		Kp	1
	Fuentes, [1]	Proposed	Fuentes, [1]	Proposed
Order 2	527	2069	25	65
Order 3	527	2540	28	81
Order 4	4687	23183	92	214

		$M_{ ho}$	
	Order 2	Order 3	Order 4
Proposed	2069	2540	23183
Without division in interior bases	1515	1835	12443
Without division in interior and face bases	687	1517	9898
Without any division	527	783	9191

Numerical results

Convergence

Results: convergence rates (i)

• Formulation

$$\nabla \times \mu_r^{-1} \nabla \times E - k_0^2 \varepsilon_r E = 0$$
$$\hat{n} \times E = 0 \quad \text{on } \partial \Omega$$
$$(\nabla \times w, \mu_r^{-1} \nabla \times E)_{\Omega} - k_0^2 (w, \varepsilon_r E)_{\Omega} = 0$$
$$(K - k_0^2 M) v = 0$$

• Relative error

$$\vartheta = \frac{k_{\rm 0,anal}^2 - k_{\rm 0,FEM}^2}{k_{\rm 0,anal}^2}, \label{eq:eq:electropy}$$

	Slope
Order 1	2.003
Order 2	4.002
Order 3	6.004
Order 4	8.019

Slope

Order 1	1.996
Order 2	3.955
Order 3	5.985

Order 4 7.802

Conclusions

- $\cdot\,$ New set of basis functions for structured meshes
 - Orthogonality through interpolation operator
 - Division between gradient and rotational spaces
- Condition number in progress for hexahedra
- Validated with electromagnetic cavities

- Complete space of basis functions
- $\cdot\,$ Concerns with the assembly in hexahedra
- $\cdot\,$ Generic procedure for obtaining interior functions
- Universal matrices with hierarchical scalar bases
- Compatibility of the whole family

Thanks for your attention! Adrian Amor-Martin a.amor@lte.uni-saarland.de