Advanced techniques in scientific computing. Application to electromagnetics

Adrián Amor-Martín Advisor: Luis E. García-Castillo December 5, 2018

University Carlos III of Madrid

Introduction



Antecedents:

- 20 years on numerical methods (FEM) for EM.
  - Mixed-order curl-conforming basis functions.
  - Non-standard mesh truncation technique.
  - Adaptivity: *h* and *hp*.
  - Hybridization with MoM, PO/PTD and GTD/UTD.



### In-house electromagnetic suite, HOFEM:

• User-friendly (based on GiD).





In-house electromagnetic suite, HOFEM:

- User-friendly (based on GiD).
- Efficient use of HPC in electromagnetics.





In-house electromagnetic suite, HOFEM:

• Efficient use of HPC in electromagnetics.



70M unknowns, 1000 cores, Tianhe-2 supercomputer (Guangzhou, China).

D. García-Doñoro, **A. Amor-Martín**, and L. E. García-Castillo, "Higher-Order Finite Element Electromagnetics Code for HPC Environments," *Procedia Computer Science*, vol. 108, pp. 818-827, 2017.























Room for improvement:

- More shapes.
- Support for *hp* meshes.
  - Automatic *h* adaptivity.
  - Basis functions for *p* adaptivity.
- Iterative solvers.



Some considerations about adaptivity:

• *h* refinement.





Some considerations about adaptivity:

- *h* refinement.
- *p* refinement.



Some considerations about adaptivity:

- *h* refinement.
- *p* refinement.
- Exponential error convergence with hp adaptivity.
  - Coarse-fine grid prohibitive in 3D EM engineering.
  - Division into subdomains  $\Rightarrow$  lack of independence.





# Viability of a non-conformal domain decomposition method (DDM) supporting parallel scalable hp adaptivity



# Viability of a non-conformal domain decomposition method (DDM) supporting parallel scalable hp adaptivity



# Viability of a non-conformal domain decomposition method (DDM) supporting parallel scalable hp adaptivity





7/63





7/63













#### Classification:

• Solution of the surface problem.



Classification:

- Solution of the surface problem.
- Overlapping vs non-overlapping.





Classification:

- Solution of the surface problem.
- Overlapping vs non-overlapping.
- Conformal vs non-conformal.





Main advantages of DDM:

- Suitable for large problems.
- Parallelization.
- Preconditioner for iterative solvers.



Additional advantages from non-conformal DDM:

- Independent meshes.
- Non-conformal meshes in periodic structures.
- Full parallel adaptivity.
- Different FEM shapes/families for each subdomain.



- Basis functions.
- Non-conformal and non-overlapping DDM.
- Adaptivity with NCDDM.





- Basis functions.
  - New shapes: prisms and hexahedra.
  - New FEM family for *p* refinement.
- Non-conformal and non-overlapping DDM.
- Adaptivity with NCDDM.





- Basis functions.
- Non-conformal and non-overlapping DDM.
  - Verification and validation.
  - Three-level parallelization.
  - Study of non-conformality accuracy.
- Adaptivity with NCDDM.





- Basis functions.
- Non-conformal and non-overlapping DDM.
- Adaptivity with NCDDM.
  - Using triangular prisms.
  - Influence of NCDDM.





- 1. Introduction
- 2. Basis functions
  - Systematic approach
  - Hierarchical family
- 3. DDM
  - Formulation
  - Verification
- 4. Adaptivity
  - Algorithm

- Validation with DDM
- L-shaped waveguides
- Towards real adaptivity
- 5. Conclusions and future lines
  - Conclusions
  - Future lines
  - Contributions
  - Dispersion error

## **Basis functions**



### Chronology:

- Nedelec:
  - Curl-conforming.
  - Mixed-order.
- Classification:
  - Interpolatory basis functions.
  - Hierarchical basis functions.
- Jin-Fa Lee and Csendes (1991), Webb (1993), Graglia et al. (1997), García-Castillo and Salazar-Palma (1998), Ilic and Notaros (2003).



Two FEM families introduced:

- Own development.
- Hierarchical family.

**Basis functions** 

Systematic approach


## Basic concepts:

- FEM: domain, space of functions and DOFs.
- Obtained with a systematic approach:
  - Known space of functions.
  - A priori definition of DOFs as functionals.
  - Basis functions as dual basis with respect to those DOFs.
- Mixed-order family: tetrahedron, 1998, triangular prism, 2016, hexahedron, 201?.



• Tetrahedra,

$$\mathcal{R}_{k} = \left\{ \mathbf{u} \in \mathbf{P}_{k}; \epsilon^{k}(\mathbf{u}) = 0 \right\}.$$

• Triangular prism: tensor product between triangle and segment,

$$\boldsymbol{\mathcal{P}}_{\boldsymbol{k}}^{\mathsf{prism}} = \left(\boldsymbol{\mathcal{R}}_{\boldsymbol{k}}(T) \otimes P_{\boldsymbol{k}}(I)\right) \times \left(\mathbf{P}_{\boldsymbol{k}}(T) \otimes P_{\boldsymbol{k}-1}(I)\right).$$

• Hexahedra: tensor product between segments in 3D,

$$\begin{aligned} \boldsymbol{\mathcal{P}}_{\boldsymbol{k}}^{\mathsf{hexa}} &= \left( P_{k-1}(I) \otimes P_{k}(I) \otimes P_{k}(I) \right) \\ &\times \left( P_{k}(I) \otimes P_{k-1}(I) \otimes P_{k}(I) \right) \\ &\times \left( P_{k}(I) \otimes P_{k}(I) \otimes P_{k-1}(I) \right). \end{aligned}$$



Coefficients for the second-order triangular prism:

$$\mathbf{N}_{i} = \begin{cases} a_{1}^{(i)} + a_{2}^{(i)}\xi + a_{3}^{(i)}\eta + a_{4}^{(i)}\zeta + a_{5}^{(i)}\xi\zeta + a_{6}^{(i)}\eta\zeta + a_{7}^{(i)}\zeta^{2} + a_{8}^{(i)}\xi\zeta^{2} + \dots \\ \dots + a_{9}^{(i)}\eta\zeta^{2} + C^{(i)}\eta^{2} + D^{(i)}\xi\eta + E^{(i)}\eta^{2}\zeta + F^{(i)}\xi\eta\zeta + G^{(i)}\eta^{2}\zeta^{2} + H^{(i)}\xi\eta\zeta^{2} \\ b_{1}^{(i)} + b_{2}^{(i)}\xi + b_{3}^{(i)}\eta + b_{4}^{(i)}\zeta + b_{5}^{(i)}\xi\zeta + b_{6}^{(i)}\eta\zeta + b_{7}^{(i)}\zeta^{2} + b_{8}^{(i)}\xi\zeta^{2} + \dots \\ \dots + b_{9}^{(i)}\eta\zeta^{2} - C^{(i)}\xi\eta - D^{(i)}\xi^{2} - E^{(i)}\xi\eta\zeta - F^{(i)}\xi^{2}\zeta - G^{(i)}\xi\eta\zeta^{2} - H^{(i)}\xi^{2}\zeta^{2} \\ c_{1}^{(i)} + c_{2}^{(i)}\xi + c_{3}^{(i)}\eta + c_{4}^{(i)}\xi^{2} + c_{5}^{(i)}\eta^{2} + c_{6}^{(i)}\xi\eta + c_{7}^{(i)}\zeta + c_{8}^{(i)}\xi\zeta + \dots \\ \dots + c_{9}^{(i)}\eta\zeta + c_{10}^{(i)}\xi^{2}\zeta + c_{11}^{(i)}\eta^{2}\zeta + c_{12}^{(i)}\xi\eta\zeta \end{cases}$$



Degrees of Freedom:

• Edges,

$$g(\mathbf{u}) = \int_{e} (\mathbf{u} \cdot \hat{\boldsymbol{\tau}}) q \, dl, \forall q \in P_1(e).$$

• Triangular faces,

$$g(\mathbf{u}) = \int_{f_t} (\mathbf{u} \times \widehat{\mathbf{n}}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} \in \mathbf{P}_0(f_t).$$

• Quadrilateral faces,

$$g(\mathbf{u}) = \int_{f_q} (\widehat{\mathbf{n}} \times \mathbf{u}) \cdot \mathbf{q} \, ds, \forall \mathbf{q} = (q_1, q_2); q_1 \in \mathcal{Q}_{0,1}; q_2 \in \mathcal{Q}_{1,0}.$$

• Volume,

$$g(\mathbf{u}) = \int_{v} \mathbf{u} \cdot \mathbf{q} \, dV, \forall \mathbf{q} \in \mathbf{P}_{0}.$$



## Dual basis:

$$g_i(\mathbf{N}_j) = \delta_{ij}$$

$$\begin{cases}
a_1^{(i)}g_i([1,0,0]) + \ldots + D^{(i)}g_i([\xi\eta,\xi^2,0]) + \ldots + c_{12}^{(i)}g_i([0,0,\xi\eta\zeta]) = 1 \\
a_1^{(j)}g_i([1,0,0]) + a_2^{(j)}g_i([\xi,0,0])0 + \ldots + c_{12}^{(j)}g_i([0,0,\xi\eta\zeta]) = 0 \\
a_1^{(i)}g_j([1,0,0]) + \ldots + b_4^{(i)}([0,\zeta,0]) + \ldots + c_{12}^{(i)}g_j([0,0,\xi\eta\zeta]) = 0
\end{cases}$$



- Local definition of  $\hat{ au}$ ,  $\widehat{\mathbf{n}}$  and directions of  $\mathbf{q}$ .
- Use of a master element,

 $\mathbf{u} = [J]^{-1}\widehat{\mathbf{u}}.$ 

# Basis functions: master element







Kernel formulation for verification:

$$\boldsymbol{\nabla} \times \frac{1}{\mu_r} (\boldsymbol{\nabla} \times \mathbf{E}) - k_0^2 \varepsilon_r \mathbf{E} = \mathbf{O}$$

$$\widehat{\mathbf{n}} \times \mathbf{E} = \mathbf{d}, \text{ on } \Gamma_{\text{D}}; \ \mathbf{d} = 0 \text{ with PEC}$$
$$\widehat{\mathbf{n}} \times \frac{1}{\mu_{r}} (\mathbf{\nabla} \times \mathbf{E}) = \mathbf{b}, \text{ on } \Gamma_{\text{N}}; \ \mathbf{b} = 0 \text{ with PMC}$$
$$\widehat{\mathbf{n}} \times \frac{1}{\mu_{r}} (\mathbf{\nabla} \times \mathbf{E}) + jk_{0}\widehat{\mathbf{n}} \times \widehat{\mathbf{n}} \times \mathbf{E} = \mathbf{c}, \text{ on } \Gamma_{\text{C}}$$

## Basis functions: MMS (i)





Garcia-Doñoro, D., Garcia-Castillo, L. E., and Ting, S. W. (2016). Verification Process of Finite-Element Method Code for Electromagnetics. IEEE Antennas and Propagation Magazine, 1045(9243/16).



### Monomials:





 $\varsigma_p = |\mathbf{u}_{\mathsf{MMS}} - \mathbf{u}_{\mathsf{FEM}}|$ 



### Smooth functions:



A. Amor-Martín, L. E. García-Castillo, and D. García-Doñoro, "Second-Order Nédélec Curl-Conforming Prismatic Element for Computational Electromagnetics," *IEEE Transactions on Antennas and Propagation*, vol. 64, no. 10, pp. 4384-4395, 2016.



### Smooth functions:



A. Amor-Martín, L. E. García-Castillo, and D. García-Doñoro, "Second-Order Nédélec Curl-Conforming Prismatic Element for Computational Electromagnetics," *IEEE Transactions on Antennas and Propagation*, vol. 64, no. 10, pp. 4384-4395, 2016.

#### Comparison between different elements and angles of incidence



### DGS band-pass filter:



D. García-Doñoro, S. Ting, A. Amor-Martín, and L. E. García-Castillo, "Analysis of Planar Microwave Devices using Higher Order Curl-Conforming Triangular Prismatic Finite Elements," *Microwave and Optical Technology Letters*, vol. 58, no. 8, pp. 1794-1801, 2016.



DGS band-pass filter:



D. García-Doñoro, S. Ting, **A. Amor-Martín**, and L. E. García-Castillo, "Analysis of Planar Microwave Devices using Higher Order Curl-Conforming Triangular Prismatic Finite Elements," *Microwave and Optical Technology Letters*, vol. 58, no. 8, pp. 1794-1801, 2016. 26/63 **Basis functions** 

Hierarchical family



- Hierarchical vector basis functions.
- Four classical energy spaces:  $H^1$ , H(curl), H(div) and  $L^2$ .
- Ready for *p*-refinement.

F. Fuentes, B. Keith, L. Demkowicz, S. Nagaraj, "Orientation embedded high order shape functions for the exact sequence elements of all shapes", *Computers & Mathematics with Applications*, 70:353–458, 2015.

## Basis functions: MMS with p ref.





## Basis functions: MMS with p variable





 $|\mathbf{u}_{\mathsf{MMS}}|$ 

29/63

## Basis functions: MMS with p variable





 $\varsigma_p$ 



# DDM

# DDM

Formulation







$$\boldsymbol{\nabla} \times \frac{1}{\mu_{ri}} (\boldsymbol{\nabla} \times \mathbf{E}_i) - k_0^2 \varepsilon_{ri} \mathbf{E}_i = \mathbf{O}_i$$

 $\widehat{\mathbf{n}}_{i} \times \mathbf{E}_{i} = \mathbf{d}, \text{ on } \Gamma_{i,\mathsf{D}}; \mathbf{d} = 0 \text{ with PEC}$   $\widehat{\mathbf{n}}_{i} \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_{i}) = \mathbf{b}, \text{ on } \Gamma_{i,\mathsf{N}}; \mathbf{b} = 0 \text{ with PMC}$   $\widehat{\mathbf{n}}_{i} \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_{i}) + jk_{0}\widehat{\mathbf{n}}_{i} \times \widehat{\mathbf{n}}_{i} \times \mathbf{E}_{i} = \mathbf{c}, \text{ on } \Gamma_{i,\mathsf{C}}$   $\widehat{\mathbf{n}}_{i} \times \mathbf{E}_{i} \times \widehat{\mathbf{n}}_{i} = \widehat{\mathbf{n}}_{j} \times \mathbf{E}_{j} \times \widehat{\mathbf{n}}_{j}, \text{ on } \Gamma_{ij}$   $\widehat{\mathbf{n}}_{i} \times \frac{1}{\mu_{ri}} (\mathbf{\nabla} \times \mathbf{E}_{i}) = -\widehat{\mathbf{n}}_{j} \times \frac{1}{\mu_{rj}} (\mathbf{\nabla} \times \mathbf{E}_{j}) , \text{ on } \Gamma_{ij}$ 



- Desprès, 1992.
- Three families (2005-):
  - Optimized Schwarz Methods.
  - Cement Element Methods.
  - Finite Element Tearing and Interconnecting techniques.



Transmission conditions:

$$\begin{aligned} (\alpha \mathcal{I} + \beta_i \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_i) + (\mathcal{I} + \gamma_i \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_i) &= \\ (\alpha \mathcal{I} + \beta_j \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_j) - (\mathcal{I} + \gamma_j \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_j) \\ \mathcal{S}_{\mathsf{TE}} &= \boldsymbol{\nabla}_{\tau} \times \boldsymbol{\nabla}_{\tau} \times \\ \mathcal{S}_{\mathsf{TM}} &= \nabla_{\tau} \nabla_{\tau} \cdot \end{aligned}$$

Cement variables:

$$\begin{aligned} \mathbf{e}_{i} &= \widehat{\mathbf{n}}_{i} \times \mathbf{E}_{i} \times \widehat{\mathbf{n}}_{i} \\ \mathbf{j}_{i} &= \frac{1}{k_{0}} \widehat{\mathbf{n}}_{i} \times \frac{1}{\mu_{\tau i}} (\mathbf{\nabla} \times \mathbf{E}_{i}) \\ \rho_{i} &= \frac{1}{k_{0}} \nabla_{\tau} \cdot \mathbf{j}_{i} \end{aligned}$$





Ax = b





| $(A_1)$                                         | $C_{12}$ |    | $C_{1n}$                                     | $(\mathbf{x}_1)$                                      |   | $(b_1)$                   |
|-------------------------------------------------|----------|----|----------------------------------------------|-------------------------------------------------------|---|---------------------------|
| $C_{21}$                                        | $A_2$    |    | $C_{2n}$                                     | X2                                                    |   | $b_2$                     |
| :                                               | :        | ۰. | :                                            | :                                                     | = | :                         |
| $\begin{pmatrix} \cdot \\ C_{n1} \end{pmatrix}$ | $C_{n2}$ |    | $\begin{pmatrix} \cdot \\ A_n \end{pmatrix}$ | $\begin{pmatrix} \cdot \\ \mathbf{x}_n \end{pmatrix}$ |   | $\binom{1}{\mathbf{b}_n}$ |

80





| $A_1$    | $C_{12}$ | 0        | 0        | $\left( \mathbf{x}_{1} \right)$ |   | $\left( b_{1} \right)$ |
|----------|----------|----------|----------|---------------------------------|---|------------------------|
| $C_{21}$ | $A_2$    | $C_{23}$ | 0        | x2                              | _ | $b_2$                  |
| 0        | $C_{32}$ | $A_3$    | $C_{34}$ | x <sub>3</sub>                  | _ | b <sub>3</sub>         |
| 0        | 0        | $C_{43}$ | $A_4$ /  | $\left( x_{4} \right)$          |   | $b_4$                  |





 $\begin{pmatrix} A_1 & C_{12} & 0 & 0 \\ C_{21} & A_2 & C_{23} & 0 \\ 0 & C_{32} & A_3 & C_{34} \\ 0 & 0 & C_{43} & A_4 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{pmatrix} = \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \mathbf{b}_4 \end{pmatrix}$ 





| $(A_1)$  | $C_{12}$ | 0        | 0 \      | $(\mathbf{x}_1)$                |   | $(b_1)$        |
|----------|----------|----------|----------|---------------------------------|---|----------------|
| $C_{21}$ | $A_2$    | $C_{23}$ | 0        | <b>X</b> 2                      | _ | $\mathbf{b_2}$ |
| 0        | $C_{32}$ | $A_3$    | $C_{34}$ | x <sub>3</sub>                  | _ | $b_3$          |
| 0        | 0        | $C_{43}$ | $A_4$ /  | $\left( \mathbf{x}_{4} \right)$ |   | $b_4$          |























Block Jacobi:

$$M = \begin{pmatrix} A_1 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & A_n \end{pmatrix}, N = \begin{pmatrix} 0 & \dots & -C_{1n}\\ \vdots & \ddots & \vdots\\ -C_{n1} & \dots & 0 \end{pmatrix}$$
$$M^{-1}A = \mathcal{I} - M^{-1}N = \begin{pmatrix} \mathcal{I} & \dots & A_1^{-1}C_{1n}\\ \vdots & \ddots & \vdots\\ A_n^{-1}C_{n1} & \dots & \mathcal{I} \end{pmatrix}$$


Three level parallelization:

- Algorithm: DDM.
- Process: MPI.
- Thread: OpenMP.

# DDM

Verification



• Introduction of domains: user-driven or ParMETIS.





• Introduction of domains: user-driven or ParMETIS.





- Introduction of domains: user-driven or ParMETIS.
- Non-matching interfaces.





- Introduction of domains: user-driven or ParMETIS.
- Non-matching interfaces.
- Shapes.





- Introduction of domains: user-driven or ParMETIS.
- Non-matching interfaces.
- Orders.







- Two-step procedure:
  - 1. Move  $C_{ij}$  to the RHS introducing **E** and cement variables.

$$\begin{pmatrix} A_1 & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & A_3 & 0 \\ 0 & 0 & 0 & A_4 \end{pmatrix} \begin{pmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \mathbf{x_3} \\ \mathbf{x_4} \end{pmatrix} = \begin{pmatrix} \mathbf{b_1} - C_{12}\mathbf{x}_{2,\text{MMS}} \\ \mathbf{b_2} - C_{21}\mathbf{x}_{1,\text{MMS}} - C_{23}\mathbf{x}_{3,\text{MMS}} \\ \mathbf{b_3} - C_{32}\mathbf{x}_{2,\text{MMS}} - C_{34}\mathbf{x}_{4,\text{MMS}} \\ \mathbf{b_4} - C_{43}\mathbf{x}_{3,\text{MMS}} \end{pmatrix}$$



- Two-step procedure:
  - 1. Move  $C_{ij}$  to the RHS introducing **E** and cement variables.
  - 2. Introduce only  ${\bf E}$  as manufactured solution.

### DDM: non-conformal in shape and order







#### DDM: non-conformal in shape and order





### DDM: non-conformal in shape and order









Preconditioned surface problem:

$$M^{-1}A = \mathcal{I} - M^{-1}N = \begin{pmatrix} \mathcal{I} & \dots & A_1^{-1}C_{1n} \\ \vdots & \ddots & \vdots \\ A_n^{-1}C_{n1} & \dots & \mathcal{I} \end{pmatrix}$$

Transmission conditions:

$$\begin{aligned} (\alpha \mathcal{I} + \beta_i \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_i) + (\mathcal{I} + \gamma_i \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_i) = \\ (\alpha \mathcal{I} + \beta_j \mathcal{S}_{\mathsf{TE}})(\mathbf{e}_j) - (\mathcal{I} + \gamma_j \mathcal{S}_{\mathsf{TM}})(\mathbf{j}_j) \end{aligned}$$







- 2D array of circular horns.
- WR-90 waveguides, f = 10 GHz.







40/63





40/63



- RCS of stealth fighter (F117).
- 10 METIS domains.





- RCS of stealth fighter (F117).
- 10 METIS domains.

















RCS-dB 6.8656 5.1989 3.5323 1.8656 0.19894 -1.4677 -3.1344 -4.8011 -6.4677 -8.1344 -9.8011 -11.468 -13.134 -14.801 -16.468 -18.134 -19.801 21.46



Problem to be solved:

- WR-90 waveguide.
- $\cdot$  0.5 $\lambda$  sections per domain.





#### h refinement?





#### h refinement?





 $\cdot$  Same mesh on the waveports.



- Same mesh on the waveports.
- Tetrahedra: only changes on the interface.





- Same mesh on the waveports.
- Tetrahedra: only changes on the interface.





- Same mesh on the waveports.
- Tetrahedra: only changes on the interface.





- Same mesh on the waveports.
- Triangular prisms: three sections.





- Same mesh on the waveports.
- Triangular prisms: three sections.





- Same mesh on the waveports.
- Triangular prisms: three sections.













#### Number of discontinuities?





#### Number of discontinuities?






















# Adaptivity



# Building blocks:







# Adaptivity

Algorithm



• Volume,

$$\mathcal{R}_{\mathrm{vol},i}^{(m)} = \boldsymbol{\nabla} \times \boldsymbol{\mu}_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_{i,\mathrm{FEM}}^{(m)}) - k_0^2 \varepsilon_{ri} \mathbf{E}_{i,\mathrm{FEM}}^{(m)} - \mathbf{O}_i.$$

Botha, M. M., and Davidson, D. B. (2005). "An explicit a posteriori error indicator for electromagnetic, finite element-boundary integral analysis.", *IEEE Transactions on antennas and propagation*, 53(11), 3717-3725.



• Boundary conditions,

$$\mathcal{R}_{\mathsf{D}}^{(m)} = 0, \quad \text{on } \Gamma_{i,\mathsf{D}}, \tag{1}$$

$$\mathcal{R}_{N}^{(m)} = \widehat{\mathbf{n}}_{i}^{(m)} \times \mu_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_{i,\text{FEM}}^{(m)}), \quad \text{on } \Gamma_{i,N}, \qquad (2)$$
$$\mathcal{R}_{C}^{(m)} = \widehat{\mathbf{n}}_{i} \times \mu_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_{i,\text{FEM}}^{(m)}) + \qquad (3)$$

$$jk_0\widehat{\mathbf{n}}_i^{(m)}\times\widehat{\mathbf{n}}_i^{(m)}\times(\boldsymbol{\Psi}_i-\mathbf{E}_{i,\mathsf{FEM}}^{(m)}),\quad\text{on }\Gamma_{i,\mathsf{C}}.$$



• Neighbor elements,

$$\mathcal{R}_{i,\text{neigh}}^{(m)} = \widehat{\mathbf{n}}_i^{(m)} \times \mu_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_{i,\text{FEM}}^{(m)}) + \widehat{\mathbf{n}}_i^{(n)} \times \mu_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_{i,\text{FEM}}^{(n)}).$$



• DDM interfaces,

$$\begin{split} \mathcal{R}_{ij,\text{DDM}}^{(m)} &= \pi_{\tau}(\mathbf{E}_{i,\text{FEM}}^{(m)}) + \pi_{\tau}^{\times}(\mu_{ri}^{-1}\boldsymbol{\nabla}\times\mathbf{E}_{i,\text{FEM}}^{(m)}) - \\ & \pi_{\tau}(\mathbf{E}_{j,\text{FEM}}^{(n)}) - \pi_{\tau}^{\times}(\mu_{rj}^{-1}\boldsymbol{\nabla}\times\mathbf{E}_{j,\text{FEM}}^{(n)}). \end{split}$$



V-Field 1.7309 1.6291 1.5273

Five marking strategies are coded.

• Based on a threshold of the maximum.





Five marking strategies are coded.

• Based on a threshold of the maximum.





Refinement based on red-green-red:





Propagation to avoid hanging nodes:



Adaptivity

Validation with DDM



- Structured prismatic mesh.
- $f = 7.5 \, \mathrm{GHz}.$
- No DDM.















• Unstructured mesh,

$$\begin{split} \varsigma_{\rm wg} &= \boldsymbol{\nabla} \times \boldsymbol{\mu}_{ri}^{-1} (\boldsymbol{\nabla} \times \mathbf{E}_h) - k_0^2 \boldsymbol{\varepsilon}_{ri} \mathbf{E}_h, \\ & \mathbf{E}_h = \mathbf{E} - \mathbf{E}_{\rm anal}. \end{split}$$



#### Estimator



• Introduction of DDM with matching interfaces.



# DDM with conf. mesh



## Refinement with DDM and non-conformal mesh:





## Refinement with DDM and non-conformal mesh:





## Refinement with DDM and non-conformal mesh:



Adaptivity

L-shaped waveguides



- Three domains.
- · a = 2b,  $f = f_{c,\text{TE10}}$ .

























$$\varsigma_s = \frac{|s_{\mathsf{FEM}} - s_{\mathsf{MM}}|}{|s_{\mathsf{MM}}} \tag{1}$$



# Bend along E-plane in a WR-90 waveguide:




1. Uniform refinement.







1. Uniform refinement.





2. *h* refinement with DDM and conformal meshes.







2. *h* refinement with DDM and conformal meshes.





3. *h* refinement with p = 3 in some parts.





3. *h* refinement with p = 3 in some parts.





4. *h* refinement with *p* refinement.







56/63



5. *h* refinement with DDM and non-matching meshes.







## 5. *h* refinement with DDM and non-matching meshes.





2. *h* refinement with DDM and matching meshes.







Adaptivity

Towards real adaptivity



- Resonant SWA with length  $4.5\lambda_g$ .
- 7 elliptical slots.
- 9 subdomains.
- Working frequency: f = 3.4045 GHz.

El Misilmani, Hilal M., Mohammed Al-Husseini, and Karim Y. Kabalan. "Design of slotted waveguide antennas with low sidelobes for high power microwave applications." *Progress In Electromagnetics Research* 56 (2015): 15-28.

















|       | Matching interfaces |            | Non-matching interfaces |            |
|-------|---------------------|------------|-------------------------|------------|
| Round | # elements          | # unknowns | # elements              | # unknowns |
| 1     | 1482                | 26644      | 1482                    | 26644      |
| 1     | 5694                | 93236      | 2278                    | 39110      |
| 2     | 37464               | 568636     | 7758                    | 122292     |
| 3     | 79704               | 1196226    | 32747                   | 493358     |









#### Matching mesh

Non-matching mesh





#### Matching mesh

Non-matching mesh





#### Matching mesh

Non-matching mesh

# Conclusions and future lines

# Conclusions and future lines

Conclusions



# Viability of a parallel h+p adaptivity using a non-conformal DDM

# Conclusions



# Conclusions and future lines

**Future lines** 



Basis functions:

- Hexahedra in HOFEM with systematic approach.
- Study of the dispersion error.



#### DDM:

- Introduction of higher order transmission conditions.
- Efficiency in repetitive structures.
- Introduction of a treatment for corner edges.



### Adaptivity:

- Introduction of adaptivity with unstructured meshes.
- Support of hanging nodes.
- Application of specific strategies for hp refinement.
- Further study with real structures.

# Conclusions and future lines

Contributions



- 3 JCR journals (+ 2 in draft).
- 14 international conferences.
- 2 JCR journals not related to the dissertation.











## Mixed order property





# Basis functions: assembling triangular faces




# Basis functions: assembling quadrilateral faces







• vc version.



• vq version.



# Results: condition number



- Condition number:  $\frac{|\lambda_{\max}(\mathbf{M})|}{|\lambda_{\min}(\mathbf{M})|}$
- Compared with formulation from other authors: Graglia and Tobon.
  - Interpolatory.
  - Spectral.

$$\begin{split} L_m L_l^2 \mathbf{W}_{ij}; \ i, j &= 1, 2, 3; j > i; m = i, j; l = 4, 5\\ L_i^2 L_l \nabla L_l; \ i &= 1, 2, 3; l = 4, 5\\ L_k L_l^2 \mathbf{W}_{ij}; \ i, j, k &= 1, 2, 3; j > i; k \neq i, j; l = 4, 5\\ L_m L_l L_{l+1} \mathbf{W}_{ij}; \ i, j &= 1, 2, 3; j > i; m = i, j; l = 4\\ L_i L_j L_l \nabla L_l; \ i, j &= 1, 2, 3; j > i; l &= 4, 5\\ L_k L_l L_{l+1} \mathbf{W}_{ij}; \ i, j, k &= 1, 2, 3; j > i; l &= 4, 5 \end{split}$$

# Results: triangle deformation



$$[M^{p}] = [D]^{-1}[M][D]^{-1}$$
$$[K^{p}] = [D]^{-1}[K][D]^{-1}$$
$$D_{ii} = \sqrt{M_{ii}}$$



|          | Refer   | ence    |         | Triangle          |         |                   | deformation |         |  |
|----------|---------|---------|---------|-------------------|---------|-------------------|-------------|---------|--|
|          | pri     | sm      | ε =     | $\varepsilon = 4$ |         | $\varepsilon = 8$ |             | 16      |  |
| Version  | $[M^p]$ | $[K^p]$ | $[M^p]$ | $[K^p]$           | $[M^p]$ | $[K^p]$           | $[M^p]$     | $[K^p]$ |  |
| vc,(1-2) | 81      | 37      | 1587    | 210               | 18826   | 791               | 276385      | 3096    |  |
| vc,(2-3) | 81      | 37      | 217     | 199               | 738     | 733               | 2827        | 2856    |  |
| vc,(3-1) | 71      | 38      | 215     | 197               | 737     | 732               | 2825        | 2854    |  |
| vq       | 72      | 37      | 215     | 197               | 737     | 732               | 2826        | 2854    |  |
| Graglia  | 37      | 19      | 174     | 104               | 639     | 394               | 2498        | 1551    |  |
| Tobon    | 171     | 20      | 842     | 101               | 3468    | 398               | 14046       | 1588    |  |

## Results: rectangle deformation



$$[M^{p}] = [D]^{-1}[M][D]^{-1}$$
$$[K^{p}] = [D]^{-1}[K][D]^{-1}$$
$$D_{ii} = \sqrt{M_{ii}}$$



|         | Refer   | rence   | Rectangle deformation |         |         | ion     |         |         |
|---------|---------|---------|-----------------------|---------|---------|---------|---------|---------|
|         | pri     | sm      | κ =                   | = 2     | κ =     | = 4     | κ =     | = 8     |
| Version | $[M^p]$ | $[K^p]$ | $[M^p]$               | $[K^p]$ | $[M^p]$ | $[K^p]$ | $[M^p]$ | $[K^p]$ |
| VC      | 72      | 37      | 3107                  | 2566    | 12270   | 10205   | 48926   | 40765   |
| vq      | 72      | 37      | 2187                  | 2066    | 8435    | 8171    | 33432   | 32599   |
| Graglia | 37      | 19      | 1484                  | 1067    | 5889    | 4279    | 23509   | 17131   |
| Tobon   | 171     | 20      | 5967                  | 1209    | 23559   | 4226    | 93928   | 16923   |

## **Results: tetrahedra**





|    | Parent El. | Example el.2 | El. Cube $1 \times 2 \times 4$ |
|----|------------|--------------|--------------------------------|
| vq | 128        | 174          | 175                            |
| VC | 138        | 189          | 1214                           |



| Two fac | e deformation        | Four face deformation |                      |  |
|---------|----------------------|-----------------------|----------------------|--|
| Vertex  | Coordinates          | Vertex                | Coordinates          |  |
| $r_1$   | (0, 0, 0)            | $r_1$                 | (0, 0, 0)            |  |
| $r_2$   | (1, 0, 0)            | $r_2$                 | (1, 0, 0)            |  |
| $r_3$   | (0, 1, 0)            | $r_3$                 | (1, 1, 0)            |  |
| $r_4$   | (0, 1, 0)            | $r_4$                 | (0, 1, 0)            |  |
| $r_5$   | $(2, 0, 1/\kappa_1)$ | $r_5$                 | $(2, 2, 1/\kappa_2)$ |  |
| $r_6$   | $(3, 0, 1/\kappa_1)$ | $r_6$                 | $(3, 2, 1/\kappa_2)$ |  |
| $r_7$   | $(2,1,1/\kappa_1)$   | $r_7$                 | $(3, 3, 1/\kappa_2)$ |  |
| $r_8$   | $(2,0,1/\kappa_1)$   | $r_8$                 | $(2,3,1/\kappa_2)$   |  |



|         | Reference  | Rectangle deformation |                |                |
|---------|------------|-----------------------|----------------|----------------|
|         | hexahedron | $\kappa_1 = 2$        | $\kappa_1 = 4$ | $\kappa_1 = 8$ |
| Version | $[M^p]$    | $[M^p]$               | $[M^p]$        | $[M^p]$        |
| VC      | 19         | 912                   | 3552           | 14112          |
| vq      | 19         | 1503                  | 5923           | 23607          |

|         | Reference  | erence Rectangle deformation |                |                |
|---------|------------|------------------------------|----------------|----------------|
|         | hexahedron | $\kappa_1 = 2$               | $\kappa_1 = 4$ | $\kappa_1 = 8$ |
| Version | $[K^p]$    | $[K^p]$                      | $[K^p]$        | $[K^p]$        |
| VC      | 30         | 2131                         | 8721           | 35168          |
| vq      | 30         | 2155                         | 8738           | 35182          |



|         | Reference  | Rectangle deformation |                |                |
|---------|------------|-----------------------|----------------|----------------|
|         | hexahedron | $\kappa_2 = 2$        | $\kappa_2 = 4$ | $\kappa_2 = 8$ |
| Version | $[M^p]$    | $[M^p]$               | $[M^p]$        | $[M^p]$        |
| VC      | 19         | 1869                  | 7405           | 29552          |
| vq      | 19         | 2696                  | 10531          | 41883          |

|         | Reference  | Rectar         | igle defori    | mation         |
|---------|------------|----------------|----------------|----------------|
|         | hexahedron | $\kappa_2 = 2$ | $\kappa_2 = 4$ | $\kappa_2 = 8$ |
| Version | $[K^p]$    | $[K^p]$        | $[K^p]$        | $[K^p]$        |
| VC      | 30         | 3689           | 14616          | 58318          |
| vq      | 30         | 4553           | 17970          | 71635          |

# Conclusions and future lines

**Dispersion error** 





- 1992: Lee.
- 1994: Warren, Scott.







- 1997: Wu, Lee.
- 2000: Ihlenburg, Babuska:  $\mathcal{O}(h^{2p})$ .
- 2003: Jin.



- Unstructured triangles in 2D.
- Unstructured tetrahedra in 3D.
- Structured tetrahedra and hexahedra is not encouraged.
- What happens to prisms?
- Tensor product between triangle and segment.

$$\boldsymbol{\mathcal{P}}_{\boldsymbol{k}}^{\text{prism}} = (\mathcal{R}^{k}(\widehat{T}) \otimes \mathcal{P}_{k}(\widehat{I})) \times (\mathcal{P}_{k}(\widehat{T}) \otimes \mathcal{P}_{k-1}(\widehat{I}))$$

## Results: phase error with MMS (i)



GREMA

#### Results: phase error with MMS (& ii)



GREMA

## Results: long waveguide (i)





## Results: long waveguide (& ii)





## Results: waveguide of $1\lambda$ (i)











|              | Theory | Experimental value |         |            |           |
|--------------|--------|--------------------|---------|------------|-----------|
| Element type | All    | Prism 1            | Prism 2 | Tetrahedra | Hexahedra |
| Order 2      | 4      | 2.917              | 3.600   | 3.128      | 2.895     |
| Order 3      | 6      | 5.138              | 5.883   | 5.201      | 5.806     |
| Order 4      | 8      | 7.368              | 7.885   | 7.419      | 7.887     |
| Order 5      | 10     | 9.498              | 9.847   | 9.437      | 9.764     |

|                | Structured mesh | Unstructured mesh |
|----------------|-----------------|-------------------|
| Tetrahedra     | 9.596e-05       | 8.414e-05         |
| Prism (mesh 1) | 1.461e-03       | 4.526e-04         |



$$\varsigma = \frac{\|c_2 \left( \left( \mathbf{E}_{\mathsf{FEM}} - \mathbf{E}_{\mathsf{MMS}} \right), \left( \mathbf{E}_{\mathsf{FEM}} - \mathbf{E}_{\mathsf{MMS}} \right)^* \right) \|_2}{\|c_2 \left( \mathbf{E}_{\mathsf{MMS}}, \mathbf{E}_{\mathsf{MMS}}^* \right) \|_2}$$
$$c_2(\mathbf{W}, \mathbf{E}) = \iiint_{\Omega} \mathbf{W} \cdot \varepsilon_r \mathbf{E} \, d\Omega$$









## DDM: Value of constants



$$\begin{split} \alpha &= -jk_{0}, \\ \beta_{i} &= \frac{-1}{\Delta_{\mathrm{TE},i} + jk_{0}}, \\ \gamma_{i} &= \frac{1}{k_{0}^{2} - jk_{0}\Delta_{\mathrm{TM},i}}, \\ \Delta_{\mathrm{TE},i} &= \sqrt{k_{\mathrm{max,TE},i}^{2} - k_{0}^{2}}, \\ \Delta_{\mathrm{TM},i} &= \sqrt{k_{\mathrm{max,TM},i}^{2} - k_{0}^{2}}, \\ k_{\mathrm{max,TE},i} &= C_{\mathrm{TE}}\frac{\pi}{h_{\mathrm{min},i}}, \\ k_{\mathrm{max,TM},i} &= C_{\mathrm{TM}}k_{\mathrm{max,TE},i}. \end{split}$$

(3)

#### DDM: MMS eigenspectra





#### DDM: MMS eigenspectra





# DDM: comparison with Jin-Fa Lee's group





## DDM: comparison with Jin-Fa Lee's group





DDM: SOTC



$$\left|\rho_{TE}\right| = \left|\frac{jk_z + \alpha + \beta_1 \left(k^2 - k_z^2\right)}{jk_z - \alpha - \beta_2 \left(k^2 - k_z^2\right)}\right|$$

$$|\rho_{TM}| = \left| \frac{j\alpha k_z + k^2 - \gamma_1 k^2 \left(k^2 - k_z^2\right)}{j\alpha k_z + k^2 - \gamma_1 k^2 \left(k^2 - k_z^2\right)} \right|$$











## DDM: workflow (ii)





## DDM: workflow (iii)





## DDM: workflow (iv)





## DDM: workflow (& v)





#### DDM: different materials





No DDM

DDM








#### Table 1: Performance results for a two-dimensional antenna array

| Case of study | Time (s) | Peak mem.(Mb) | Unknowns |
|---------------|----------|---------------|----------|
| 3x3 No DDM    | 416      | 5380          | 1360188  |
| 3x3 DDM       | 463      | 3371          | 1398118  |
| 4x4 No DDM    | 1579     | 12253         | 2261472  |
| 4x4 DDM       | 1191     | 5832          | 2368032  |



















### Radiation of circular horn (i)





### Radiation of circular horn (ii)





63/63

### Radiation of circular horn (iii)





# Radiation of SWA (i)





## Radiation of SWA (ii)





63/63

### Estimator for L-shape



